Brassica chinensis L. was chosen and exposed to different concentrations of Cd exposure to evaluate its Cd-accumulating capacity and its potential cellular defensive mechanisms. Cd accumulation in the shoots and roots of B. chinensis was up to 1348.3±461.8 and 3761.0±795.0 mg per killogram of dry weight, respectively, under 200 μmol/L of Cd exposure. Increasing Cd accumulation in the plant was accompanied by rapid accumulation of phytochelatins (PCs), and the sequestration of Cd by PCs provided a primary cellular mechanism for Cd detoxification and tolerance of B. chinensis. Furthermore, malondialdehyde formation, hydrogen peroxide content and antioxidative enzyme activities such as superoxide dismutase, catalase, guaiacol peroxidase and ascorbate peroxidase were observed in the shoots of Cd-stressed B. chinensis. Increasing enzyme activities in response to concentrations of 5 to 50 μmol/L Cd showed an efficient defense against oxidative stress, suggesting that the antioxidative system was a secondary defensive mechanism. These resulted in reduced free Cd damage and enhanced Cd accumulation and tolerance. Glutathione plays a pivotal role in these two detoxification pathways. In general, these results suggested that PCs and the antioxidative system are synergistic in combatting Cd-induced oxidative stress and that they play important roles in Cd detoxification of B. chinensis, and also give a deep understanding of the natural defensive mechanisms in plants under heavy metal stress.