Para-xylene was chosen as the probe molecule to study adsorption thermodynamics and diffusion kinetics on NaY zeolite and composite structured NaY zeolite synthesized by in-situ crystallization from kaolin microsphere(designated as Na Y/kaolin composites) separately, using a high precision intelligent gravimetric analyzer(IGA). The adsorption isotherms showed normal Langmuir type-Ⅰ behaviors. The increased adsorption heat with an increasing p-xylene coverage supported a mechanism of phase transition, diffusion and re-arrangement of p-xylene molecules during the adsorption process. The rearrangement seemed to be most pronounced at an adsorption loading of 2.13 and 2.29 mmol/g for Na Y zeolite and Na Y/kaolin composites respectively. Compared with Na Y zeolite, a 2—3 times higher in the diffusion coefficient of p-xylene was observed on Na Y/kaolin composites when the pressure was more than 50 Pa. Temperature-programmed desorption(TPD) of p-xylene on two samples from room temperature to 450 ℃ at a special loading has also been investigated by IGA. Results showed only single desorption peak appeared for Na Y zeolite, indicating that adsorption can only occur in the super-cage structure. Comparably, there were two different peaks for in-situ synthesized Na Y zeolite, corresponding to the two thermo desorption processes in both super-cage structure and the channels provided by kaolin, respectively.Key words:
Adsorption desulfurization performance of Na Y,HY and Ce HY zeolites is evaluated in a miniature fixedbed flow by model gasoline containing with thiophene,tetrahydrothiophene,2-methylthiophene,benzothiophene or mixed sulfur compounds.The structural properties of adsorbents are characterized by XRD,N2-adsorption and XPS techniques.Adsorption desulfurization mechanisms of these sulfur compounds over the specific active sites of adsorbents as a major focus of this work,have been systematically investigated by using in situ FT-IR spectroscopy with single and double probing molecules.Desulfurization experimental results show that the Ce HY adsorbent exhibits superior adsorption sulfur capacity at breakthrough point of zero sulfur for ultra-deep removal of each thiophenic sulfur compound,especially in the capture of aromatic 2-methylthiophene(about ca.28.6 mgS/gadsorbent).The results of in situ FT-IR with single probing molecule demonstrate an important finding that high oligomerization ability of thiophene or 2-methylthiophene on the CeHY can promote the breakthrough adsorption sulfur capacity,mainly resulting from the synergy between Br?nsted acid sites and Ce(III)hydroxylated species active sites located in the supercages of Ce HY.Meanwhile,the result of in situ FT-IR with double probing molecules further reveals the essence of oligomerization reactions of thiophene and 2-methylthiophene molecules on those specific active sites.By contrast,the oligomerization reaction of benzothiophene molecules on the active sites of Ce HY cannot occur due to the restriction of cavity size of supercages,but they can be adsorbed on the Br?nsted acid sites via protonation,and on Ce(III)hydroxylated species and extra-framework aluminum hydroxyls species via direct"S-M"bonding interaction.As to the tetrahydrothiophene,adsorption mechanism is similar to that of benzothiophene,except in the absence of protonation.The paper can provide a new design idea of specific adsorption active sites in excellent desulfurization adsorbents for elevat
Yun ZuChang ZhangYucai QinXiaotong ZhangLi ZhangHonghai LiuXionghou GaoLijuan Song
Through improving the aging process during synthesis of the support, γ-Al2O3 with large pore volume and high surface area was synthesized by a facile secondary reforming method. The synthesis parameters, such as the reaction temperature, the first aging temperature and the second aging temperature, were investigated. The textural properties of γ-Al2O3 were characterized by means of N2 adsorption-desorption isotherms, X-ray powder diffractometry (XRD), scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy and thermogravimetry (TG). The experimental results indicated that AACH and amorphous A1OOH were the precursors of alumina, which were formed via precipitation from solutions after reaction of aluminum sulphate with ammonium hydrogen carbonate. The precursor nanocrystallites grew and re-assembled during the secondary reforming process, which resulted in an increased pore size and pore volume and a decreased bulk density. The as-synthesized γ-Al2O3 materials featured meso/macroporosity, large pore volume (2.175 cm^3/g), high surface area (237.8 m^2/g), and low bulk density (0.284 g/mL).