B.Libert and J.Quisquater proposed an identity(ID)-based threshold decryption scheme. This paper found flaw in their security reduction and presented two methods to prove this scheme is resist against chosen-plaintext attack(CPA), based on the weaker model of security known as selective ID-based threshold CPA and the common model known as ID-based threshold CPA respectively.
Pervasive computing environment is a distributed and mobile space. Trust relationship must be established and ensured between devices and the systems in the pervasive computing environment. The trusted computing (TC) technology introduced by trusted computing group is a distributed-system-wide approach to the provisions of integrity protection of resources. The TC's notion of trust and security can be described as conformed system behaviors of a platform environment such that the conformation can be attested to a remote challenger. In this paper the trust requirements in a pervasive/ubiquitous environment are analyzed. Then security schemes for the pervasive computing are proposed using primitives offered by TC technology.
In Crypto'05, Boneh et al. presented two broadcast encryption schemes. Their work has exciting achievements: the header (also called ciphertexts) and the private keys are of constant size. In their paper, they give an open question to construct a traitor tracing algorithm for their broadcast encryption schemes, and combine the two systems to obtain an efficient trace-and-revoke system. In this paper, we give a negative answer to their open question. More precisely, we show that three or more insider users are able to collude to forge a valid private key for pirate decoding against their schemes. Moreover, we prove that there exists no traitor tracing algorithm to identify the colluders. Our pirate decoding can also similarly be applied to Lee et al.'s broadcast encryption schemes in ISPEC'06.