A successful approach to prepare the Pd-Ni nanowire arrays electrode without carbon supports was reported. The morphology and crystallinity of nanowire were characterized by transmission electron microscopy, selected-area electron diffraction (SAED), X-ray diffrac- tion (XRD), and X-ray photoelectron spectroscopy (XPS) analyses, respectively. The results show that the diameters of the nanowire are in the range of 65-75 nm, and the polycrystalline binary solid solution alloy is formed in the Pd-Ni nanowire. Cyclic voltammograms, chronoampero- grams, and electrochemical impedance spectroscopy dem- onstrate that the Pd-Ni nanowire arrays electrodes show excellent electrocatalytic performance for methanol oxi- dation in alkaline media. The catalytic activity of Pd-Ni nanowire arrays electrode is ,,~ 1.39 times higher than that of the Pd nanowire arrays electrode and ,,~2.28 times higher than that of the commercial Pd/C catalyst. This is mostly owing to the transfer of electron density from Ni to Pd. These results indicate that Pd-Ni nanowire arrays electrode is very promising in an alkaline direct methanol fuel cell.