The electrical conductivity of Cu-10Ag in situ filamentary composite was studied during the deformation and annealing processes. The dependence of electrical resistivity of the deformed composites on the true strain presents a two-stage change with increase of the true strain. The intermediate heat treatment and the stabilized annealing treatment to the deformed composite promote the separation of Ag precipitate, and increase the electrical conductivity. The maximum conductivity of the composite experienced the stabilizing heat treatment can reach about 97% IACS with σb≥400 MPa at 550 ℃ annealing, and reach about 70% IACS with σb≥1 250 MPa at 300 ℃ annealing. The corresponded strength of the composite was reported. The microstructure reason for the changes of the conductivity was discussed.
The Cu-10Ag and Cu-10Ag-RE (RE=Ce, Y) alloys in situ filamentary composites were prepared. The relationships of the ultimate tensile strengths (UTS) and microstructure changes of the composites were studied. With increasing of the true strain η, the sizes of the Ag filaments in the composites reduce according to a negative exponential function of η:d=d0·exp(-0.228η), and the UTS of the composites increase also according to a exponential function of η, σ Cu/Ag=σ 0(Cu)+[k Cu/Agd0 -1/2]exp(η/3), here d0 is a coefficient related to the original size of Ag phase. The strain strengthening follows a two-stage strengthening effect. The strengthening mechanisms are related to changes of microstructure in the deformation process. At the low true strain stage, the strengthening is mainly caused by the working hardening controlled by dislocation increasing; at the high true strain stage, the strengthening is mainly caused by the super-fine Ag filaments and the large coherent interfaces between the Ag filaments and Cu matrix. The trace RE additions and the rapid solidification obviously refine scales of the Ag filament of the composites, and therefore obviously increased the strain strengthening rate. The microstructure refinement of the composites, especially the refinement of Ag filament, is the main reason of the high strain strengthening effect in Cu-Ag alloy in situ filamentary composites.
Ning Yuantao, Zhang Xiaohui, Wu Yuejun(Kunming Institute of Precious Metals, Kunming 650221, Yunnan, China)