A graph G is induced matching extendable if every induced matching of G is included in a perfect matching of G. A graph G is generalized induced matching extendable if every induced matching of G is included in a maximum matching of G. A graph G is claw-free, if G dose not contain any induced subgraph isomorphic to K1,3. The k-th power of G, denoted by Gu, is the graph with vertex set V(G) in which two vertices are adjacent if and only if the distance between them is at most k in G. In this paper we show that, if the maximum matchings of G and G3 have the same cardinality, then G3 is generalized induced matching extendable. We also show that this result is best possible. As a result, we show that if G is a connected claw-flee graph, then G3 is generalized induced matching extendable.