Distinguishability plays a crucial rule in studying observability of hybrid system such as switched system. Recently, for two linear systems, Lou and Si gave a condition not only necessary but also sufficient to the distinguishability of linear systems. However, the condition is not easy enough to verify. This paper will give a new equivalent condition which is relatively easy to verify.
In the paper, the null interior controllability for a fourth order parabolic equation is obtained. The method is based on Lebeau-Rabbiano inequality which is a quantitative unique continuation property for the sum of eigenfunctions of the Laplacian.
Decay of the energy for the Cauchy problem of the wave equation of variable coefficients with a dissipation is considered. It is shown that whether a dissipation can be localized near infinity depends on the curvature properties of a Riemannian metric given by the variable coefficients. In particular, some criteria on curvature of the Riemannian manifold for a dissipation to be localized are given.
In this paper,we give a complete characterization for the essential normality of quasi-homogenous quotient modules of the Hardy modules H2 (D2).Also,we show that if d 3,then all the principle homogenous quotient modules of H 2 (Dd) are not essentially normal.
In this paper, we establish some range inclusion theorems for non-archimedean Banach spaces over general valued fields. These theorems provide close relationship among range inclusion, majorization and factorization for bounded linear operators. It is found that these results depend strongly on a continuous extension property, which is always true in the classical archimedean case, but may fail to hold for the non-archimedean setting. Several counterexamples are given to show that our results are sharp in some sense.
WANG PengHui 1 & ZHANG Xu 2,3 1 School of Mathematics, Shandong University, Jinan 250100, China