This work presents an anticipatory terminal iterative learning control scheme for a class of batch proc- esses, where only the final system output is measurable and the control input is constant in each operations. The propgsed approach works well with input constraints provided that the desired control input with respect to the desired trajectory is within the samratiorl bound. The tracking error convergence is established with rigorous mathe- matical analysis. Simulation results .are provided to showthe effectiveness, of the proposed approach.
Nowadays, high-precision motion controls are needed in modern manufacturing industry. A data-driven nonparametric model adaptive control(NMAC) method is proposed in this paper to control the position of a linear servo system. The controller design requires no information about the structure of linear servo system, and it is based on the estimation and forecasting of the pseudo-partial derivatives(PPD) which are estimated according to the voltage input and position output of the linear motor. The characteristics and operational mechanism of the permanent magnet synchronous linear motor(PMSLM) are introduced, and the proposed nonparametric model control strategy has been compared with the classic proportional-integral-derivative(PID) control algorithm. Several real-time experiments on the motion control system incorporating a permanent magnet synchronous linear motor showed that the nonparametric model adaptive control method improved the system s response to disturbances and its position-tracking precision, even for a nonlinear system with incompletely known dynamic characteristics.
An enhanced model free adaptive control (EMFAC) algorithm is presented for a class of nonlinear system by inte...
Yuanming Zhu 1 , Zhongsheng Hou 2 Advanced Control Systems Lab, School of Electronics and Information Engineering, Beijing Jiaotong University, Beijing 100044