We study the proton magic O, Ca, Ni, Zr, Sn, and Pb isotope chains from the proton drip line to the neutron drip line with the relativistic continuum Hartree-Bogoliubov (RCHB) theory. Particulary, we study in detail the properties of even-even Ca isotopes due to the appearance of giant halos in neutron rich Ca nuclei near the neutron drip line. The RCHB theory is able to reproduce the experimental binding energiesE b and two neutron separation energiesS 2n very well. The predicted neutron drip line nuclei are28O,72Ca,98Ni,136Zr,176Sn, and266Pb. Halo and giant halo properties predicted in Ca isotopes withA>60 are investigated in detail through analysis of two neutron separation energies, nucleon density distributions, single particle energy levels, and the occupation probabilities of energy levels including continuum states. The spin-orbit splitting and the diffuseness of nuclear potential in these Ca isotopes, as well as the neighboring lighter isotopes in the drip line Ca region and find certain possibilities of giant halo nuclei in the Ne?Na?Mg drip line nuclei are also studied.