The first-principles calculations were performed to investigate the electronic structure, magnetic and dielectric properties of Cr-doped Fe_3C, in comparison to those of pure Fe_3C and Cr_3C. The obtained results show that the thermodynamic stability of Crdoped Fe_3C becomes weaker in terms of the larger formation enthalpy, on the contrary, the metallicity and covalency are found to strengthen to some extent. The magnetic moments of Fe_3C, Fe_(11)CrC_4(g), and Fe_(11)CrC_4(s) are respectively 21.36 μB/cell, 16.92 μB/cell, and 17.62 μB/cell, and in Fe_(11)CrC4(g) and Fe_(11)CrC_4(s), the Fe of Wyckoff positions of 8d and 4c is substituted by Cr. The local magnetic moment of Cr at 8d site is larger than that at 4c site in the doped structure, which is opposite to that of Fe. In low frequency band, the permittivity follows the ranking of Fe_(11)Cr C_4(s)>Cr_3C>Fe_(11)Cr C_4(g)>Fe_3C. Once exceeding a certain frequency, the sequence will be broken. Besides the electron transition, the polarization of atoms also makes a contribution to the dielectric properties.