超音速气体雾化(ultra-sonic gas atomization,USGA))喷嘴是实现喷射雾化的重要装置,它能够产生脉动的超音速气流,获得较小的平均粒径和集中的粒径分布.在USGA喷嘴的共振管端部引入了主动的激励信号,组成双激励式超音速气体雾化器,并对超音速气体雾化器内部Hart-mann腔体气体流场在无激励/有激励情况下所产生的气体振动特性进行了数值研究.结果表明在主动激励器的作用下,超音速气体雾化器内气流的振动效果如振幅和起振特性等都得到了有效的加强.研究发现超音速气体雾化器存在多个气体受激振动的共振频率,其对应于两类不同的共振模式,"Hartmann模式"和"全局模式".双激励器信号的频率、激励幅度及相位差改变都能够有效地改变超音速气流的振动特性.研究同时阐明了Hartmann共振管和二次共振管在USGA喷嘴腔体内产生气体脉动时的联动特点.
运用线性理论分析了粘性超薄液膜沿柱状纤维垂直下落的稳定性特征,研究了厚度低于100 nm的薄膜在外力驱动下的流动以及van der Waals力的影响.结果表明随着薄膜相对厚度的下降,纤维表面的曲率将使得线性扰动的发展得到抑制,而van der Waals力促进扰动的增长,这一竞争机制导致了增长率随薄膜相对厚度非单调的变化.还得到了流动的绝对和对流不稳定分区.结果表明van der Waals力扩大绝对不稳定流动区域,表面张力也会有利于绝对不稳定的发展,而外驱动力正好起到相反的作用.