To solve the problem of information fusion in the strapdown inertial navigation system(SINS)/celestial navigation system(CNS)/global positioning system(GPS) integrated navigation system described by the nonlinear/non-Gaussian error models,a new algorithm called the federated unscented particle filtering(FUPF) algorithm was introduced.In this algorithm,the unscented particle filter(UPF) served as the local filter,the federated filter was used to fuse outputs of all local filters,and the global filter result was obtained.Because the algorithm was not confined to the assumption of Gaussian noise,it was of great significance to integrated navigation systems described by the non-Gaussian noise.The proposed algorithm was tested in a vehicle's maneuvering trajectory,which included six flight phases:climbing,level flight,left turning,level flight,right turning and level flight.Simulation results are presented to demonstrate the improved performance of the FUPF over conventional federated unscented Kalman filter(FUKF).For instance,the mean of position-error decreases from(0.640×10-6 rad,0.667×10-6 rad,4.25 m) of FUKF to(0.403×10-6 rad,0.251×10-6 rad,1.36 m) of FUPF.In comparison of the FUKF,the FUPF performs more accurate in the SINS/CNS/GPS system described by the nonlinear/non-Gaussian error models.
This paper describes a practical method for finding the invariant orbits in Ja relative dynamics. Working with the Hamiltonian model of the relative motion including the J2 perturbation, the effective differential correction algorithm for finding periodic orbits in three-body problem is extended to formation flying of Earth's orbiters. Rather than using orbital elements, the analysis is done directly in physical space, which makes a direct connection with physical requirements. The asymptotic behavior of the invariant orbit is indicated by its stable and unstable manifolds. The period of the relative orbits is proved numerically to be slightly different from the ascending node period of the leader satellite, and a preliminary explanation for this phenomenon is presented. Then the compatibility between J2 invariant orbit and desired relative geometry is considered, and the design procedure for the initial values of the compatible configuration is proposed. The influences of measure errors on the invariant orbit are also investigated by the Monte-Carlo simulation.