Spherical Sb-doped SnO2 (ATO) nanoparticles were synthesized by the sol-gel route, employing SnCl4.5H2O and SbCl3 as precursors in an ethanol solution. The influences of the calcining temperature and calcining time on the crystallite size, crystallinity, lattice parameters, lattice distortion ratio and the resistivity of the ATO nanoparticles were synthetically investigated. The results suggested that the ATO nanoparticles were crystallized in a tetragonal cassiterite structure of SnO2 with a highly (110)- plane-preferred orientation. The calcining temperature had a dominating effect on the crystallite size, crystallinity, lattice distortion ratios and resistivity of the ATO. As the calcining temperature increased, the average crystallite size increased, the crystallinity was promoted accompanied by a decrease in the lattice distortion ratio and a corresponding decrease in the resistivity of the ATO. X-ray diffraction (XRD) and Fourier transform infrared spectrophotometer (FTIR) analysis revealed that Sb ions could not entirely supplant the Sn ions in the SnO2 lattice for a calcining time of less than 0.5 h, even at a calcining temperature of 1000 ℃. The ATO nanoparticles calcined at 1000 ℃ for 3,0 h possessed the lowest resistivity of 10.18 Ωcm.
Xiaohua ZhongBaoping YangXiaoliang ZhangJunhong JiaGewen Yi
A transparent phase-pure anatase TiO2 nanofilm was prepared through magnetron sputtering method,and a subsequent annealing treatment awarded it the superhydrophilic characteristic.To make clear the mechanism of the heat-induced superhydrophilicity,the chemical composition and surface morphology of the film were investigated in detail and compared before and after the annealing treatment mainly by field emission scanning electron microscopy(FESEM),X-ray diffraction method(XRD),Raman spectroscopy,and X-ray photoelectron spectroscope(XPS).The results suggest that the probable mechanism is in accordance with the UV-induced mechanism,where the heat-induced surface oxygen vacancies and hydroxyl radicals play important roles for achieving the superhydrophilicity.
Du Wen1,2,Ye Yinping1,Li Hongxuan1,Zhao Fei1,2,Ji Li1,Quan Weilong1,2,Chen Jianmin1,Zhou Huidi1 1 State Key Laboratory of Solid Lubrication,Lanzhou Institute of Chemical Physics,Chinese Academy of Sciences,Lanzhou 730000,China 2 Graduate University of Chinese Academy of Science,Beijing 100049,China