Phase field model was employed to study the variations of interatomic potentials of Ni 3 Al (L1 2 phase) and Ni 3 V (DO 22 phase) as a function of temperature and concentration. The long-range order (LRO) parameter related interatomic potentials equations formulated by Khachaturyan were utilized to establish the inversion equations for L1 2 and DO 22 phases, with which interatomic potentials could be calculated. The interatomic potentials of Ni-Al and Ni-V exhibited approximately linear increases and decreases, individually, with enhanced Al concentration. Substituting the inverted interatomic potentials into the microscopic phase field equations led to three cases of precipitation sequence: the DO 22 phase preceded L1 2 phase precipitating at the interatomic potentials of Ni-V > Ni-Al; the vice cases; and two phases precipitated simultaneously at interatomic potentials of Ni-V and Ni-Al were equal.
DONG WeiPing WANG YongXin YANG Kun CHEN Zheng LU YanLi
Based on the phase field theory, the phase precipitation sequence of Ni75A110Cr15 alloy and the free energy of each phase were studied. Moreover, the interatomic potentials of Llo phase, L12 phase and DO22 phase changing with temperature and concen- trations were computed through utilizing the interatomic potentials equations induced by Khachaturyan's relational equations between the interatomic potentials and the long-range order (LRO) parameters. Results match preceding work and demonstrate that the phase precipitation sequence of Ni75AlloCr15 alloy is the disordered phase -L10 pre-precipitation phase -L12 equilibrium phase -L12+DO22 equilibrium phase. Free energies of Llo pre-precipitation phase are higher and interatomic potentials are smaller than those of L12 equilibrium phase; therefore, it is concluded that Llo phase is unstable, and phase transformation would occur to L12 which is more stable; L12 phase precipitates earlier than DO22 phase because L12's interaction potentials are larger than DO22's.
A microscopic phase-field model was used to investigate a directional coarsening mechanism caused by the anisotropic growth of long period stacking and different effects of phases on precipitation in Ni-Al-V alloy.The results show that DO22 mainly coarsens along its short axis,which may press the neighboring L12,leading to the interaction among atoms.Diffusion channels of Al are formed in the direction where the mismatch between γ' and γ reduces;the occupation probabilities are anisotropic in space;and direction coarsening of L12 occurs finally.With a rise of ageing temperature,phases appear later and DO22 is much later at a higher temperature,the average occupation probabilities of Al and V reduce,and Al changes more than V.