Here we report an integrated study of zircon U-Pb age and Hf isotope composition for a gneiss sample from the Kongling terrain in the Yangtze Craton. CL imaging reveals that most zircons are magmatic, and a few of them have thin metamorphic rims. The magmatic zircons gave a weighted mean U-Pb age of 3218±13 Ma, indicating the gneiss is the oldest basement rock in the Yangtze Craton found to date. They have εHf(t) value of -2.33±0.51,and two-stage Hf model age of 3679±49 Ma,indicating that the gneiss was derived from partial melting of >3.6 Ga crustal rock. The metamorphic rims yielded an age of 2732±16 Ma, implying that the metamorphic event occurred in the Neoarchean era, which may be also a major tectono-thermal event in the Yangtze Craton.
Zircon U-Pb age and Hf isotope, and major and trace element compositions were reported for granite at Quanyishang, which intruded into the Kongling complex in Yichang, Hubei Province. The results show that the Quanyishang granite is rich in silicon and alkalis but poor in calcium and magnesium, and displays enrichment in Ga, Y, Zr, Nb but depletion in Sr and Ba, exhibiting the post-orogenic A-type affinity. 90% zircons from the granite are concordant, and give a middle Paleoproterozoic magmatic crystallization age (mean 1854 Ma). Initial Hf isotope ratios (176Hf/177Hf)i of the middle Paleoproterozoic zircons range from 0.280863 to 0.281134 and they have negative εHf(t) values with a minimum of -26.3. These zircons give the depleted mantle model ages (TDM) of 2.9―3.3 Ga (mean 3.0 Ga), and the average crustal model ages (Tcrust) of 3.6―4.2 Ga (mean 3.8 Ga). A Mesoarchean grain with 207Pb/206Pb age of 2859 Ma has a slightly high TDM (3.4 Ga) but similar Tcrust (3.8 Ga) to the Paleoproterozoic zircons. All these data suggest that the source materials of the Quanyishang A-type granite are unusually old, at least ≥2.9 Ga (even Eoarchean). The event of crustal remelting, which resulted in the formation of the Quanyishang granite in the middle Paleoproterozoic, recorded the cratonization of the Yangtze conti- nent. The process may have relation to the extension and collapse of the deep crust with Archean ages, in response to the transition stage of the assembly and breakup of the Columbia supercontinent.
The foramtion and evolution of collisional orogen is a prominent feature along convergent plate margins, and is generally a complex process. This article presents an integrated study of zircon genesis, U-Pb age and Lu-Hf isotope composition as well as geological characteristics for the western Dabie orogen to constrain its multi-stage evolution history. The results suggest that the formation of oceanic crust in the Huwan area was constrained at ca. 400―430 Ma, which was slightly later than the collision of the northern Qinling with the North China Block. It formed in a marginal basin in the northern margin of the Yangtze Block. The peak metamorphism of eclogite in the Huwan area occurred at ca. 310 Ma, and the timing of the initial exhumation of oceanic eclogite was about 270 Ma. The high to ultrahigh pressure (HP-UHP) metamorphic rocks in the Xinxian and the Hong'an metamorphic zones have the same ages and natures as those of the HP-UHP metamorphic rocks in the other Dabie-Sulu terrains, and also have experienced multi-stage exhumation, and thus can be taken as a coherent part of the Dabie-Sulu orogen. Therefore, the Qinling-Dabie-Sulu orogen is a typical multi-stage continental collision orogen, with an amalgamation process extending more than 200 Ma.
WU YuanBao State Key Laboratory of Geological Processes and Mineral Resources, Faculty of Earth Sciences, China University of Geosciences, Wuhan 430074, China