您的位置: 专家智库 > >

国家自然科学基金(10971251)

作品数:8 被引量:5H指数:2
相关作者:叶培新宋占杰雷阳更多>>
相关机构:南开大学天津大学更多>>
发文基金:国家自然科学基金更多>>
相关领域:理学自动化与计算机技术环境科学与工程更多>>

文献类型

  • 8篇期刊文章
  • 1篇会议论文

领域

  • 8篇理学
  • 2篇自动化与计算...
  • 1篇电子电信
  • 1篇环境科学与工...

主题

  • 3篇N-
  • 1篇上界
  • 1篇上界估计
  • 1篇算子
  • 1篇随机化
  • 1篇机化
  • 1篇积分
  • 1篇OPERAT...
  • 1篇OPERAT...
  • 1篇OPTIMA...
  • 1篇PROBLE...
  • 1篇QUANTU...
  • 1篇QUERY
  • 1篇REGULA...
  • 1篇RESTRI...
  • 1篇SOBOLE...
  • 1篇STABIL...
  • 1篇THEORE...
  • 1篇Z型
  • 1篇AL

机构

  • 2篇南开大学
  • 1篇天津大学

作者

  • 2篇叶培新
  • 1篇雷阳
  • 1篇宋占杰

传媒

  • 2篇Acta M...
  • 2篇Acta M...
  • 1篇天津大学学报...
  • 1篇Transa...
  • 1篇Applie...
  • 1篇中国科学:数...

年份

  • 1篇2013
  • 3篇2012
  • 4篇2011
  • 1篇2010
8 条 记 录,以下是 1-9
排序方式:
Estimates of Central Moments for One Kind of Exponential-Type Operators
2011年
In this paper,the explicit estimates of central moments for one kind of exponential-type operators are derived.The estimates play an essential role in studying the explicit approximation properties of this family of operators.Using the proposed method,the results of Ditzian and Totik in 1987,Guo and Qi in 2007,and Mahmudov in 2010 can be improved respectively.
宋占杰杨振东叶培新
MKZ型算子中心矩的明确上界估计
2013年
MKZ型算子及其各类变型算子在逼近论中占据重要地位.若计算其各阶中心矩,其上界估计式需要首先给出.但是,由于算子本身计算复杂度很高,仅仅是其二阶矩的粗略估计和明确估计分别是在18年和35年之后才有人给出.而其各阶矩的粗略估计更是在近半个世纪之后得到的.参考已有研究成果,利用新的逼近技巧给出MKZ型算子各阶矩的明确上界估计.
雷阳叶培新宋占杰
关键词:上界估计
Truncation and aliasing errors for Whittaker-Kotelnikov-Shannon sampling expansion被引量:3
2012年
Let B^pΩ, 1 ≤ p 〈 ∞, be the space of all bounded functions from Lp(R) which can be extended to entire functions of exponential type Ω. The uniform error bounds for truncated Whittaker-Kotelnikov-Shannon series based on local sampling are derived for functions f ∈ B^pΩ without decay assumption at infinity. Then the optimal bounds of the aliasing error and truncation error of Whittaker-Kotelnikov-Shannon expansion for non-bandlimited functions from Sobolev classes L/(Wp(R)) are determined up to a logarithmic factor.
YE Pei-xinSONG Zhan-jie
Stability in Compressed Sensing for Some Sparse Signals
In this paper, it is proved that every-sparse signal vector can be recovered stably from the measurement vecto...
Sheng ZhangPeixin Ye
关键词:STABILITY
QUANTUM COMPLEXITY OF SOBOLEV IMBEDDINGS
2012年
Using a new reduction approach, we derive a lower bound of quantum com- plexity for the approximation of imbeddings from anisotropic Sobolev classes B (Wp^r ([0, 1]^d)) to anisotropic Sobolev space Wq^s([0, 1]d) for all 1 ≤ p, q ≤ ∞. When p ≥ q, we show this bound is optimal by deriving the matching upper bound. In this case, the quantum al- gorithms are not significantly better than the classical deterministic or randomized ones. We conjecture that the bound is also optimal for the case p 〈 q. This conjecture was confirmed in the situation s = 0.
叶培新
Optimal Quadrature Problem on n-Information for Hardy-Sobolev Classes
2011年
For β 〉 0 and an integer r 〉 2, denote by H∞,β those 2π-periodic, real-valued functions f on R, which are analytic in Sβ = {z ∈ C: [ImzI 〈β} and satisfy the restriction If(r)(z)[ ≤ 1, z ∈ Sβ. The optimal quadrature formulae about information composed of the values of a function and its kth (k : 1,..., r - 1) derivatives on free knots for the classes H∞,β are obtained, and the error estimates of the optimal quadrature formulae are exactly determined.
Xue Hua LIGen Sun FANG
QUANTUM COMPLEXITY OF THE APPROXIMATION FOR THE CLASSES B(W_p^r([0,1]~d)) AND B(H_p^r([0,1]~d))
2010年
We study the approximation of functions from anisotropic Sobolev classes b(WpR([0, 1]d)) and HSlder-Nikolskii classes B(HPr([0, 1]d)) in the Lq ([0, 1]d) norm with q 〈 p in the quantum model of computation. We determine the quantum query complexity of this problem up to logarithmic factors. It shows that the quantum algorithms are significantly better than the classical deterministic or randomized algorithms.
叶培新胡晓菲
确定性与随机化框架下的Sobolev类上的嵌入与积分的复杂性
2011年
本文研究各向异性Sobolev类上的嵌入以及积分问题的复杂性.我们得到这些问题在确定性、随机化框架以及平均框架下n-重最小误差的精确阶.所得结果表明在非嵌入连续函数空间情形,随机误差与平均误差实质性地小于确定性误差.从数量级看,对于嵌入问题,收敛阶最大改进可达到n-1+ε,这里ε是任意正数.对于积分问题最大改进可达到n-1.这是数值分析中迄今发现的随机化算法较之确定性算法在收敛阶方面的最大改进.
叶培新
关键词:MONTE
Learning Rates for Least Square Regressions with Coefficient Regularization被引量:2
2012年
We analyze the learning rates for the least square regression with data dependent hy- pothesis spaces and coefficient regularization algorithms based on general kernels. Under a very mild regularity condition on the regression function, we obtain a bound for the approximation error by esti- mating the corresponding K:-functional. Combining this estimate with the previous result of the sample error, we derive a dimensional free learning rate by the proper choice of the regularization parameter.
Bao Huai SHENGPei Xin YEJian Li WANG
共1页<1>
聚类工具0