The adsorption behaviors of Hg(Ⅱ) on laterite from Guizhou Province,China,were studied and the adsorption mechanism was discussed.The results showed that different mineral compositons in the laterite will cause differences in the adsorption capacity of laterite to Hg(Ⅱ).Illite and non-crystalloids are the main contributors to enhancing the adsorption capacity of laterite to Hg(Ⅱ).The pH of the solution is an important factor affecting the adsorption of Hg(Ⅱ) on laterite.The alkalescent environment (pH 7-9) ...
The adsorption behaviors of Cr(VI) on laterite from Guizhou Province were studied in this paper, and the adsorption mechanism was discussed as well. Results showed that different mineral compositions in the laterite would cause differences in the capacity of laterite to absorb Cr(VI). Gibbsite, iron oxide minerals and non-crystalloids are the main contributors to enhancing the capacity of laterite to absorb Cr(VI). The pH of the solution is an important factor affecting the adsorption of Cr(VI) on laterite. Acidic environment (pH=2-5) is favorable to the adsorption of Cr(VI). The amount of adsorbed Cr(VI) decreases with increasing pH of the solution. With increasing initial concentrations of Cr(VI), the amount of adsorbed Cr(VI) increases first, and then decreases. The optimal adsorption concentration of Cr(VI) on laterite is 250 μg/mL. The adsorption of Cr(VI) on laterite is a rapid process, about 80% Cr(VI) will be adsorbed within 2 hours. And the adsorption of Cr(VI) on kaolinite is a slow process.
Fifty-seven shallow groundwater samples were collected from Guiyang karst basin, China, to analyze the aqueous rare-earth elements in low-water seasons and it is shown that the total amount of rare-earth elements (ΣREE) in karst groundwater is exceedingly low compared with that in carbonate rocks or weathering crusts of carbonate rocks, and ranges from 0.01 to 0.43, from 0.03 to 0.27, from 0.03 to 0.19 and from 0.05 to 1.38 μg·L-1 for dolomite, dolomitic & limestone, limestone and clastic rock aquifer, respectively. Both distributions and contents of rare-earth elements (REE) in karst groundwater reflect the lithology of host rocks or weathering crusts of carbonate rocks through which groundwater flows. The chondrite-normalized patterns show a non-flat profile with higher enrichment of slightly light rare-earth elements (LREE) than heavy rare-earth elements (HREE), prominent fractionation between LREE and HREE, negative Ce anomalies and negative or positive Eu anomalies. There is more obvious fractionation between LREE and HREE in groundwater than that in carbonate rocks and their weathering crusts due to high contents of HCO3? and PH in groundwater. In shallow karst groundwater, REE(CO3)n2n-3 (n=1 and 2) is the main inorganic species of REE. But for a clastic rock aquifer, both REESO4+ and REECO3+ are the main inorganic species of REE. Species of REE in groundwater is closely associated with the hydrochemical type of groundwater which is predominated by the lithology of host rocks, groundwater-rock interaction and weathering-pedogenesis of carbonate rocks.
HE ShouyangZHU LijunYANG RuidongSHEN ZhengYU Xiaohong