A simple improved structure is designed to trap and launch two cold atomic balls vertically at the same time, which works like "two fountains", but is more compact since most components of the "two fountains" are shared. It is expected to improve the stability of the fountain markedly.
A fold optical path is utilized to capture and launch atoms in the atomic fountain. This improved technique reduces the laser power needed by 60 percent, facilitates suppression of the laser power fluctuations, and leads to a more simple and stable system.
The magnetic field in the microwave interaction zone of the fountain atomic clock was measured by stimulated Raman transitions. By measuring the two-photon transition frequency between the Zeeman levels of the two ground states, we achieved a magnetic field measurement accuracy of the order of 0.28 nT, This method is immune to the Doppler shift and the AC Stark shift. The second order Zeeman shift of the fountain clock is 170.7 × 10^-15, with the uncertainty of 7,2 × 10^-16.
An experiment on measuring the magnetic field in Ramsey interaction region of the atomic fountain clock by detecting the Zeeman frequency shift of 87Rb hyperfine transition is presented.By mu-metal shielding and coils compensating,the magnetic fluctuations resulting from asymmetry and instability are less than 10 and 0.025 nT,respectively.The relative frequency uncertainty of atomic fountain clock caused by the magnetic field is less than 5.4×10-16.