The configurations,stabilities,electronic,and magnetic properties of FenAu(n = 1–12) clusters are investigated systematically by using the relativistic all-electron density functional theory with the generalized gradient approximation.The substitutional effects of Au in Fen+1(n = 1,2,4,5,10–12) clusters are found in optimized structures which keep the similar frameworks with the most stable Fen+1clusters.And the growth way for FenAu(n = 6–9) clusters is that the Au atom occupies a peripheral position of Fen cluster.The peaks appear respectively at n = 6 and 9 for Fen Au clusters and at n = 5 and 10 for Fen+1clusters based on the size dependence of second-order difference of energy,implying that these clusters possess relatively high stabilities.The analysis of atomic net charge Q indicates that the charge always transfers from Fe to Au atom which causes the Au atom to be nearly non-magnetic,and the doped Au atom has little effect on the average magnetic moment of Fe atoms in Fen Au cluster.Finally,the total magnetic moment is reduced by 3 μB for each of Fen Au clusters except n = 3,11,and 12 compared with for corresponding pure Fen+1 clusters.
The geometries, stability, electronic and magnetic properties of Mn4TM(TM = 3d, 4d) clusters have been systematically studied by means of a density functional theory with generalized gradient approximation. Except Mn4 Tc, the most stable structures for Mn4 TM clusters are all the distorted triangular bi-pyramid structures with the transition-metal atom at the vertex or at the middle plane. The systemic study on average binding energy and HOMO-LUMO energy gap demonstrates that TM-doping could stabilize the host cluster. For entire Mn4 TM clusters, the total magnetic moments are increased in various degrees compared with pure Mn5 cluster, except the Mn4 Tc. Mn4 Ni and Mn4 Pd cluster possess a larger ferromagnetic alignment moment(20 μB), which suggests their potential applications as an ideal construct primitive of the high-density holographic storage material. The different doping atoms resulting in various magnetic properties are also elucidated in this paper.
The geometrical structures, stabilities, electronic and magnetic properties of AlnZr(n = 1~14) clusters have been systematically investigated using density functional theory. It is found that for the optimized clusters the zirconium atom prefers to remain on the surface, and the growth patterns are organized as follows: Zr substituted Aln+1 clusters or Zr capped Aln clusters as well as Al added Aln-1Zr clusters. All doped clusters exhibit relatively larger average binding energies and magnetic behaviors compared with pure Aln+1 counterpart. The calculated fragmentation energies and second-order difference of energies exhibit pronounced odd-even alternation behavior as a function of the cluster size when n = 3~13. In all AlnZr clusters, there exits internal hybridization in both Al and Zr atoms and charge transfer from Al to Zr atom, which reflects the strong interactions between the two kinds of atoms. The magnetic property analysis shows that the 4d electrons of Zr atom are the main origin for cluster magnetism.
The structural, electronic, and magnetic properties of ConO (n = 2- 10) clusters have been systematically investigated within the framework of the generalized gradient approximation density functional theory. The results indicate that the O atom occupies the surface-capped position on ConO (n = 2-10) clusters. The stabilities of the host clusters are improved by adding one O atom. Maximum peaks of the second-order difference energy of the ground-state ConO clusters are found at n = 3, 6 and 8, indicating higher stability than their neighboring clusters. Compared with corresponding pure Con clusters, the O-doped cobalt clusters have larger gaps between the HOMO and LUMO energy levels, indicating their higher chemical stabilities. In addition, the doping of O atom exhibits different influence on the magnetism of the clusters. This is also further investigated by the local magnetic moment, deformation charge density and partial local density of states analysis.