This paper presents a simultaneous H2/H∞ stabilization problem for the chemical reaction systems which can be modeled as a finite collection of subsystems. A single dynamic output feedback controller which simultaneously stabilizes the multiple subsystems and captures the mixed H2/H∞ control performance is designed. To ensure that the stability condition, the H2 characterization and the H∞ characterization can be enforced within a unified matrix inequality framework, a novel technique based on orthogonal complement space is developed. Within such a framework, the controller gain is parameterized by the introduction of a common free positive definite matrix, which is independent of the multiple Lyapunov matrices. An iterative linear matrix inequality (ILMI) algorithm using Matlab Yalmip toolbox is established to deal with the proposed framework. Simulation results of a typical chemical reaction system are exploited to show the validity of the proposed methodology.
在部分遮阴条件下,光伏阵列功率-电压(P-U)特性曲线呈现多峰现象,传统的最大功率点跟踪(maximum power point tracking,MPPT)方法会失效。因此,提出了一种基于电导增量法的全局搜索(Global search based on Incremental conductance,GSINC)方法来实现最大功率点跟踪,该方法保证不会陷入局部最优且不会错过任何极值点。最后通过仿真验证了该算法能快速且准确地跟踪最大功率点,有效提高了光伏阵列输出效率。