Intensifying effects of ferrous sulfate and pyrite on bioleaching of low-grade molybdenite concentrate were studied in this paper. The experimental results show that the oxidation dissolution of molybdenite can be accelerated with the addition of either ferrous sulfate or pyrite in bi- oleaching medium. Pyrite has better enhancing effect than ferrous sulfate, and the highest molybdenum leaching rate in pyrite-added solutions is 20.85 %, increasing by 12.64 % compared with that in 9 K leaching system. Molybdenum leaching rate does not increase linearly with the increase of the addition of either ferrous sulfate or pyrite in each type solution. Great amounts of [NH4Fe3(SO4)2(OH)6] and [KFe3(SO4)2(OH)6] with different morphologies will be deposited on molybdenite ores when the additions of Fe from ferrous sulfate or pyrite exceed that from 9 K leaching system by 0.5 times, and these deposits hinder the oxidation dissolution of molybdenite to some extent.
The effect of Phanerochaete chrysosporium on degradation and preg-robbing capacity of activated carbon,which was used as a substitute of carbonaceous matter in carbonaceous gold ores,was studied.After 14 d treatment with Phanerochaete chrysosporium,the degradation rate of activated carbon reached 27.59%.The XRD and FTIR analyses indicate that Phanerochaete chrysosporium can distort the micro-crystalline structure of activated carbon,increase the number of oxygen-containing groups and aliphatics and make the aromatic structures be oxidized and exfoliated.The gold-adsorption tests show that Phanerochaete chrysosporium can reduce the preg-robbing capacity of activated carbon by 12.88%.This indicates that Phanerochaete chrysosporium is an available microorganism,and it can be employed to reduce the preg-robbing capacity of carbonaceous matter and improve the gold leaching rate.The combined effect of passivation,alkalization and oxidation of biological enzymes-free radicals of Phanerochaete chrysosporium on carbonaceous matter was also discussed.
Passivation is a common phenomenon on the surface of chalcopyrite in the process of bioleaching. The ordinary leaching and strengthening leaching by adding glass beads were carried out. The results show that the passivation of chalcopyrite was greatly weakened in strengthening leaching due to the change of leaching conditions. The copper leaching efficiency was increased from 50% to 89.8% through adding beads. The SEM and X-ray diffraction (XRD) analyses illustrate that there are few jarosite precipitates and weak passivation on the surface of chalcopyrite in strengthening leaching. In contrast, there are thick and compact jarosite precipitate and obvious passivation in ordinary leaching, which hinders further dissolution of chalcopyrite.