您的位置: 专家智库 > >

国家自然科学基金(101037)

作品数:6 被引量:7H指数:2
发文基金:国家自然科学基金中国博士后科学基金更多>>
相关领域:理学自动化与计算机技术更多>>

文献类型

  • 6篇中文期刊文章

领域

  • 5篇理学
  • 1篇自动化与计算...

主题

  • 4篇MEAN_C...
  • 4篇SUBMAN...
  • 3篇RIEMAN...
  • 2篇SUBMAN...
  • 2篇COMPLE...
  • 1篇N+
  • 1篇QUASI
  • 1篇CURVAT...
  • 1篇DIMENS...
  • 1篇EXTENS...
  • 1篇GAUSSI...
  • 1篇GEOMET...
  • 1篇IMAGE
  • 1篇INTEGR...
  • 1篇MANIFO...
  • 1篇MAXIMA...
  • 1篇RIGIDI...
  • 1篇EXISTE...
  • 1篇CERTAI...
  • 1篇HYPERS...

传媒

  • 4篇Applie...
  • 1篇Acta M...
  • 1篇Scienc...

年份

  • 1篇2011
  • 1篇2009
  • 3篇2007
  • 1篇2005
6 条 记 录,以下是 1-6
排序方式:
The extension for mean curvature flow with finite integral curvature in Riemannian manifolds被引量:3
2011年
We investigate the integral conditions to extend the mean curvature flow in a Riemannian manifold. We prove that the mean curvature flow solution with finite total mean curvature at a finite time interval [0,T) can be extended over time T. Moreover,we show that the condition is optimal in some sense.
XU HongWeiYE FeiZHAO EnTao
Complete hypersurfaces in a 4-dimensional hyperbolic space
2009年
This paper gives a classification of complete hypersurfaces with nonzero constant mean curvature and constant quasi-Gauss-Kronecker curvature in the hyperbolic space H4(-1),whose scalar curvature is bounded from below.
XU Hong-wei1 ZHAO En-tao2 Center of Mathematical Sciences,Zhejiang University,Hangzhou 310027,China
ON COMPLETE SUBMANIFOLDS WITH PARALLEL MEAN CURVATURE IN NEGATIVE PINCHED MANIFOLDS被引量:3
2007年
A rigidity theorem for oriented complete submanifolds with parallel mean curvature in a complete and simply connected Riemannian (n + p)-dimensional manifold N^n+p with negative sectional curvature is proved. For given positive integers n(≥ 2), p and for a constant H satisfying H 〉 1 there exists a negative number τ(n,p, H) ∈ (-1, 0) with the property that if the sectional curvature of N is pinched in [-1, τ-(n,p, H)], and if the squared length of the second fundamental form is in a certain interval, then N^n+p is isometric to the hyperbolic space H^n+P(-1). As a consequence, this submanifold M is congruent to S^n(1√H^2 - 1) or the Veronese surface in S^4(1/√H^2-1).
Leng Yan Xu Hongwei Zhejiang University, Center of Mathematical Sciences
GEOMETRIC PROPERTIES FOR GAUSSIAN IMAGE OF SUBMANIFOLDS IN S^(n+p)(1)
2007年
The geometric properties for Gaussian image of submanifolds in a sphere are investigated. The computation formula, geometric equalities and inequalities for the volume of Gaussian image of certain submanifolds in a sphere are obtained.
Xu Hongwei Zhang Wei
关键词:SUBMANIFOLD
GEOMETRIC INEQUALITIES FOR CERTAIN SUBMANIFOLDS IN A PINCHED RIEMANNIAN MANIFOLD被引量:1
2007年
This article gives some geometric inequalities for a submanifold with parallel second fundamental form in a pinched Riemannian manifold and the distribution for the square norm of its second fundamental form.
谢纳庆许洪伟
关键词:SUBMANIFOLDS
GEOMETRIC RIGIDITY THEOREM FOR SUBMANIFOLDS WITH POSITIVE CURVATURE
2005年
A geometric rigidity theorem for submanifolds with parallel mean curvature and positive curvature in a space form is proved. It is a generalization of the famous rigidity theorems due to S. T. Yau and others.
Xu Hongwei Han Wei
关键词:SUBMANIFOLDS
共1页<1>
聚类工具0