In this article, the electron beam welding of the Cu alloy ( QCrO. 8) with Ti alloy (TC4) sheet was processed and the joint microstructure as well as the welding process were studied. The results show that brittle reaction layer which was mainly composed of TiCu, Ti2Cu, Ti2Cu3 and TiCu2formed at the weld fusion line, regardless of welding on the middle or on the Cu side. The mechanical properties of the joint were severely deteriorated by the layer that tensile strength was only 89. 4 MPa for welding on the Cu side. The microstructure of the joint was improved with pure nickel as filler metal for the electron beam welding. The weld was mainly composed of solid solution. Intermetallic compound phase decreased signifwantly in fusion line compared with the joint without filler metal. The mechanical properties of the joint were obviously improved that the average tensile strength was 205.2 MPa and the bending strength was 413.3 MPa with O. 5 mm offset of electron beam on the Cu side.
Visual analytics has been widely studied in the past decade. One key to make visual analytics practical for both research and industrial applications is the appropriate definition and implementation of the visual analytics pipeline which provides effective abstractions for designing and implementing visual analytics systems. In this paper we review the previous work on visual analytics pipelines and individual modules from multiple perspectives: data, visualization, model and knowledge. In each module we discuss various representations and descriptions of pipelines inside the module, and compare the commonalities and the differences among them.
The most common experimental methods of measuring material strength are the uniaxial compressive and tensile tests. Generally, shearing fracture model occurs in both the tests. Compressive strength is higher than tensile strength for a material. Shearing fracture angle is smaller than 45° under uniaxial compression and greater than 45° under uniaxial tension. In this work, a unified relation of material strength under uniaxial compression and tension is developed by correlating the shearing fracture angle in theory. This constitutive relation is quantitatively illustrated by a function for analyzing the material strength from shear fracture angle. A computational simulation is conducted to validate this theoretical function. It is full of interest to give a scientific illustration for designing the high-strength materials and engineering structures.
Because of its wide application, the subgraph matching problem has been studied extensively during the past decade. However, most existing solutions assume that a data graph is a vertex/edge-labeled graph (i.e., each vertex/edge has a simple label). These solutions build structural indices by considering the vertex labels. However, some real graphs contain rich-content vertices such as user profiles in social networks and HTML pages on the World Wide Web. In this study, we consider the problem of subgraph matching using a more general scenario. We build a structural index that does not depend on any vertex content. Based on the index, we design a holistic subgraph matching algorithm that considers the query graph as a whole and finds one match at a time. In order to further improve efficiency, we propose a "partial evaluation and assembly" framework to find sub- graph matches over large graphs. Last but not least, our index has light maintenance overhead. Therefore, our method can work well on dynamic graphs. Extensive experiments on real graphs show that our method outperforms the state-of-the-art algorithms.
The polymer waveguide optical biosensor based on the Mach-Zehnder interferometer (MZI) by using spectral splitting effect is investigated. The MZI based biosensor has two unequal width sensing arms. With the different mode dispersion responses of the two-arm waveguides to the cladding refractive index change, the spectral splitting effect of the output interference spectrum is obtained, inducing a very high sensitivity. The influence of the different mode dispersions between the two-arm waveguides on the spectral splitting characteristic is analyzed. By choosing different lengths of the two unequal width sensing arms, the initial dip wavelength of the interference spectrum and the spectral splitting range can be controlled flexibly. The polymer waveguide optical biosensor is designed, and its sensing property is analyzed. The results show that the sensitivity of the polymer waveguide optical biosensor by using spectral splitting effect is as high as 10^4nm/RIU, with an improvement of 2-3 orders of magnitude compared with the slot waveguide based microring biosensor.
Systematic physical experiments examining the packing densification of mono-sized cylindrical parti- cles subject to 3D mechanical vibration were carried out. The influence of vibration conditions such as vibration time, frequency, amplitude, vibration strength, container size, and the aspect ratio and spheric- ity of the particle on the packing density were analyzed and discussed. For each initial packing density with a certain aspect ratio, operating parameters were optimized to achieve much denser packing. The results indicate that the packing density initially increases with vibration time and then remains con- stant. The effects of vibration frequency and amplitude on the packing densification have similar trends, i.e. the packing density first increases with the vibration frequency or amplitude to a high value and then decreases; too large or small frequency or amplitude does not enhance densification. Increasing the container size can reduce container wall effects and help achieve a high packing density. Varying the particle aspect ratio and sphericity can lead to different dense random packing structures. Overall, based on results of the examined systems, the highest random packing density obtained in an infinite sized container can reach 0.73, which agrees well with corresponding numerical and analytical results in the literature.
Although the role of copper (Cu) in promoting KRas- or BRaf-mutation driven cancers via activating MEK1/2 kinases is known, the mechanism by which the copper transporter SLC31A1 (CTR1) is upregulated in pancreatic cancer (PDAC, KRas mutation) is not defined. In this study, we provide evidence that MEK signal maintains a high level of SLC31A1 through silencing the expression of miR-124-3P (miR-124) via a novel MEK-DNMT1-miR-124 feedback loop in PDAC cells. Further, we reveal that miR-124 directly targets suppression of SLC31A1, and miR-124 introduction together with tetrathiomolybdate (TM) treatment hampered pancreatic cancer growth in vitro and in vivo. Our results demonstrate that a SLC31A1-MEK-DNMT1-miR-124 feedback loop is an important pathway to maintain copper absorption and promote pancreatic cancer progression, and we hope to provide a Cu-chelation as an adjuvant treatment strategy, to block the progression in Kras mutant PDAC patients.