Tungsten oxide (WO3) nanorods, which were used to load platinum (Pt) nanoparticles, were investi- gated. H2WO4 nanorods with diameters from 10 to 50 nm were obtained when tungsten precursor was added into homogenous double-walled carbon nanotubes (DWCNT) and ethylene glycol (EG) solution. Nanosized rod-like WO3 were achieved after calcination of the DWCNT/H2W04 composite. Sphere-like Pt nanoparticles were loaded on the surface of the nanorods by EG in-situ reduction. Pt particles were isolated by DWCNT/WO3 nanorods and secondary accumulation could be prevented when Pt particles appeared in the DWCNT/WO3 nanorod/EG dispersion solution. Therefore, Pt nanoparticles with mean di- ameters of 2-6 nm could be obtained. Pt-deposited on DWCNT/WO3 nanorods exhibited high electrochemical activity, which could facilitate the low-cost mass production of Pt catalyst.
The preparation of WO_(3) nanorods by double-walled carbon nanotube(DWCNT)template was investi-gated in this study.Owing to that the prepared H_(2)WO_(4)can be isolated by the homogenously dispersed DWCNT bun-dles and secondary accumulation can be avoided effec-tively,the growth of H_(2)WO_(4) can be restrained,and H_(2)WO_(4) nanorods with diameter of 10–50 nm can be prepared.After calcination of the prepared DWCNT/H_(2)WO_(4) com-posite in oxygen,WO_(3) nanorods with diameter of 10–100 nm and high specific surface area of 16.4 m^(2)·g^(-1) can be obtained.It is concluded that the DWCNTs play an im-portant role in the effective mediation of the morphology and size of nano-WO_(3).