We demonstrate an all-optical reconfigurable logic gate based on dominant nonlinear polarization rotation accompanied with cross-gain modulation effect in a single semiconductor optical amplifier (SOA).Five logic functions,including NOT,OR,NOR,AND,and NAND,are realized using 10-Gb/s on-off keying signals with flexible wavelength tunability.The operation principle is explained in detail.By adjusting polarization controllers,multiple logic functions corresponding to different input polarization states are separately achieved using a single SOA with high flexibility.
We propose and experimentally demonstrate mutual optical format conversion between signals characterized as 10-Gb/s nonreturn-to-zero on-of-keying(NRZ-OOK) and NRZ binary phase-shift keying(BPSK) types. The conversion is based on stimulated Brillouin scattering(SBS) in a single-mode optical fber. An OOK signal is converted into a BPSK signal through optical carrier absorption, for which a SBS loss of 30 MHz is used in long-haul transmission. The converted BPSK signal is reverted to an OOK signal with a corresponding SBS gain of 30 MHz for direct detection. The proposed OOK-to-BPSK and BPSK-to-OOK format conversions can be implemented in transmitter and receiver nodes by using a laser source as the Brillouin pump.
We propose a stable multi-longitudinal Brillouin/semiconductor fiber laser (BSFL) as the upstream source in a bidirectional single-fiber wavelength-division multiplexing-passive optical network (WDM-PON). The downstream wavelength serves as the pump of the BSFL. Brillouin-frequency-shifted (-10.8 GHz) upstream carrier is generated to suppress the Rayleigh backscattering and back reflection-induced crosstalk. The stable multi-longitudinal operation of the BSFL, attributed to the four-wave mixing (FWM) effect in the semiconductor optical amplifier (SOA) reduces the difficulty of generating a stable single-longitudinal fiber laser-based upstream carrier. Bidirectional symmetric transmission at 10 Gb/s over a 12.5-km single mode fiber with less than 2-dB power penalty is demonstrated.