An atypical occlusion process that occurred in North China on 14 July 2011 is studied based on both observations and a real-data Weather Research and Forecasting (WRF) model simulation. The results show that this atypical occlusion process was significantly different from the traditional, synoptic-scale occlusion process that occurs within extratropical cyclones. It was caused by the merger of two cold-type mesoscale fronts. One of the fronts developed from the gust front of convective storms, while the other was a sea-breeze front. As the two fronts moved towards each other, the warm air between them was squeezed and separated from the surface. An atypical occluded front was formed when the two fronts merged, with the warm air forced aloft. This kind of occlusion is termed a "merger" process, different from the well-known "catch-up" and "wrap-up" processes. Moreover, local convection was found to be enhanced during the merger process, with severe convective weather produced in the merger area.
Abuduwaili ABULIKEMUXU XinWANG YuanDING JinfengWANG Yan
Global teleconnections associated with tropical convective activities were investigated, based on monthly data of 29 Northern Hemisphere winters: December, January, February, and March (DJFM). First, EOF analyses were performed on the outgoing longwave radiation (OLR) data to characterize the convective ac tivity variability in the tropical Indian Ocean and the western Pacific. The first EOF mode of the convective activity was highly correlated with the ENSO. The second EOF mode had an east–west dipole structure, and the third EOF mode had three convective activity centers. Two distinct teleconnection patterns were identified that were associated, respectively, with the second and third EOF modes. A global primitive equation model was used to investigate the physical mechanism that causes the global circulation anoma lies. The model responses to anomalous tropical thermal forcings that mimic the EOF patterns matched the general features of the observed circulation anomalies well, and they were mainly controlled by linear processes. The importance of convective activities in the tropical Indian Ocean and western Pacific to the extended and longrange forecasting capability in the extratropics is discussed.