We study the functions with low differential uniformity,and concentrates mainly on the properties of perfect nonlinear(PN) functions,including the properties of the derivative of the components of those functions.Some sufficient and necessary conditions have been explored to judge when a function is a PN function.These conditions may be useful in constructing new PN functions.We also construct some functions with differential 4-uniformity that have rarely been studied in the literature.Some of the constructed functions with differential 4-uniformity have high nonlinearity as well.Finally,a class of functions with differential 4-uniformity which are not extended affine equivalent to any power functions are constructed.
Algebraic immunity is a new cryptographic criterion proposed against algebraic attacks. In order to resist algebraic attacks, Boolean functions used in many stream ciphers should possess high algebraic immunity. This paper presents two main results to find balanced Boolean functions with maximum algebraic immunity. Through swapping the values of two bits, and then generalizing the result to swap some pairs of bits of the symmetric Boolean function constructed by Dalai, a new class of Boolean functions with maximum algebraic immunity are constructed. Enumeration of such functions is also n given. For a given function p(x) with deg(p(x)) 〈 [n/2], we give a method to construct functions in the form p(x)+q(x) which achieve the maximum algebraic immunity, where every term with nonzero coefficient in the ANF of q(x) has degree no less than [n/2].