Numerical simulations are performed to investigate the effects of gas compressibility on the synthetic jet flow. A slot synthetic jet and a circular orifice synthetic jet are simulated assuming 2D and axis-symmetric behavior. The velocity of orifice, frequency response and the compressibility are studied through simulation. The numerical results are validated against existing experimental and analytical data, and good agreement are obtained, Gas compressibility effects on the synthetic jet flow are discussed. In conclusion, for the two kinds of different synthetic jets studied in this paper, the critical values of Mach number are 0. 082 and 0. 033.
This paper covers a micro sensor analog signal processing circuit system(MASPS) chip with low power and a digital signal processing circuit board implementation including hardware connection and software design. Attention has been paid to incorporate the MASPS chip into the digital circuit board.The ultimate aim is to form a hybrid circuit used for mixed-signal processing,which can be applied to a micro sensor flow monitoring system.
A low-power complementary metal oxide semiconductor(CMOS) operational amplifier (op-amp) for real-time signal processing of micro air vehicle (MAV) is designed in this paper.Traditional folded cascode architecture with positive channel metal oxide semiconductor(PMOS) differential input transistors and sub-threshold technology are applied under the low supply voltage.Simulation results show that this amplifier has significantly low power,while maintaining almost the same gain,bandwidth and other key performances.The power required is only 0.12 mW,which is applicable to low-power and low-voltage real-time signal acquisition and processing system.