Tin bronze wires were produced by dieless drawing. The effects of heating power, the distance between cooler and heater as well as feeding speed on the diameter, the temperature field, and the deformation region profile of the wires were investigated. The results indi-cated that each processing parameter exhibited both lower and upper limits of stable deformation based on the criterion of stable deformation with the diameter fluctuation of ±0.05 mm. Both the temperature and its gradient of the deformation region increased with increasing heating power under stable deformation, but decreased with an increase in feeding speed. As the distance between cooler and heater increased, the temperature of the deformation region increased and the slope of the deformation region profile decreased. The processing limit map of sta-ble deformation exhibited a closed curve and the unstable deformation consisted of wire breakage and diameter fluctuations.
Since processing parameters have always been assumed to be stable in the current finite element numerical simulation of dieless drawing process, the simulation results for the product dimension tend to stabilize gradually. In fact, the dimension fluctuation exists in the forming process all the while. A mathematical model of Gauss distribution for processing parameters was employed and a finite element numerical model of dieless drawing process with non-steady processing parameters was established. Dieless drawing processing of Ni-Ti alloy wire was conducted for verifying the proposed model. The results indicated that the non-steady processing parameters model had higher simulation accuracy of the wire diameter than that given by the steady parameters model. Furthermore, the model could also be used to analyze the fluctuation characteristics in the whole dieless drawing process.
He Yong, Liu Xuefeng, Wang Zhen, Xie Jianxin University of Science and Technology Beijing, Beijing 100083, China