Here we report the fabrication and superconductivity of the iron-based arsenic oxide SmO1-xFxFeAs compound. X-ray diffraction (XRD) results prove that the lattice parameters a and c decrease systematically with increasing x in between 0〈x≤0.35, but when x〉0.35 the a and c increase with the decrease of x in the SmO1-xFxFeAs. The critical temperature (To) increases with increasing x in between 0.15≤x≤0.3, while x〉0.3 the Tc decreases with the increase ofx. It is found that at x=0.3 SmO0.7F0.3FeAs has the highest onset resistivity transition temperature of 55.5 K. The critical current density (Jc) value at 10 K for the obtained SmO0.TF0.3FeAs is 1.3×10^5 A/cm^2 (0 T). Meanwhile one can estimates Hc2(0) from the slope of the Hc2(T) curve at T=-Tc (Hc2 is the upper critical field), and for the 90% normal-state resistivity (Pn) criterion (Tc=55 K), Hc2(0) is determined to be -253 T.
Zhiyong Liu Hongli Suo Lin Ma Min Liu Zhiping Wu Zhichao Guo Luping Han Meiling Zhou
The superconductivity of iron-based superconductor SmO 0.7 F 0.2 FeAs was investigated. The SmO 0.7 F 0.2 FeAs sample was prepared by the two-step solid-state reaction method. The onset resistivity transition temperature is as high as 56.5 K. X-ray diffraction (XRD) results show that the lattice parameters a and c are 0.39261 and 0.84751 nm, respectively. Furthermore, the global J c was more than 2.3 × 10 5 A/cm 2 at T = 10 K and H = 9 T, which was calculated by the formula of J c = 20ΔM/[a(1-a/(3b))]. The upper critical fields, H c2 ≈ 256 T (T = 0 K), was determined according to the Werthamer-Helfand-Hohenberg formula, indicating that the SmO 0.7 F 0.2 FeAs was a superconductor with a very promising application.