Suppose f is a spirallike function of type β and order α on the unit disk D.Let Ωn,p1,p2,…,pn={z=(z2,z2,…,zn)′∈C^n:∑j=1^n|zj)^Pj〈1},where 1≤p1≤2,pj≥1,j=2,…,n,are real numbers.In this paper,we will prove that Φn,β2,γ2,…βn,γn(f)(z)=(f(z1), preserves spirallikeness of type β and order α on Ωn,p1,p2,…,Pn.
Suppose f is an almost starlike function of order α on the unit disk D. In this paper, we will prove that Фn,β2,γ2,…βn,γn(f)(z)=(f(z1),(f(z1)/z1)^β2(f'(z1))^γ2 z2,…,(f(z1)/z1)^βn(f'(z1))^γnzn)1 preserves almost starlikeness of order α on Ωn,p2,…,pn={z=(z1,z2,…,zn)'∈Cn:∑^n j=1|zj|^pj〈1},where 0〈p1≤2,pj≥1,j=2,…,n,are real numbers.
This note induces some generalized Roper-Suffridge extension operators such that they are used to construct some almost starlike mappings of order α and starlike mappings of order a on different domains.