The preparation of TiO2/poly(L-lactide-co-ε-caprolactone)(PLCL) nanocomposites and their properties were reported.TiO2nanoparticles were surface modified by ring-opening polymerization of ε-caprolactone(ε-CL).The resulting poly(ε-caprolactone)-grafted TiO2(g-TiO2) was characterized by Fourier transform infrared spectroscopy(FTIR),thermogravimetric analysis(TGA) and transmission electron microscopy(TEM).The g-TiO2can be uniformly dispersed in chloroform and the g-TiO2/PLCL nanocomposites were successfully fabricated through solvent-casting method.The effects of the content of g-TiO2nanoparticles on tensile properties and shape memory properties were investigated.A significant improvement in the tensile properties of the 5% g-TiO2/PLCL mass fraction nanocomposite is obtained:an increase of 113% in the tensile strength and an increase of 11% in the elongation at break over pure PLCL polymer.The g-TiO2/PLCL nanocomposites with a certain amount of g-TiO2content have better shape memory properties than pure PLCL polymer.The g-TiO2nanoparticles play an additional physical crosslinks which are contributed to improvement of the shape memory properties.