Objective To search novel genes or pathways involved in the recovery process after restraint stress in rats. Methods We compared the hypothalamus transcriptional profiles of two different recovery patterns (fast recovery vs slow recovery) from restraint stress in rats using oligonucleotide microarray, the recovery pattern was determined by the decrement of plasma adrenocorticotropic-hormone (ACTH) and corticosterone levels during one hour recovery period after stress. A real-time quantitative RT-PCR was applied to validate the differential expressed genes. Results Analysis of the microarray data showed that most of genes were not differentially expressed between fast recovery group and slow recovery group. Among the differentially expressed genes we found that talin, together with serine/threonine protein phosphatase PPl-beta catalytic subunit (PP-1B) and integrin α-6 precursor (VLA-6) genes, were at least 1.5 fold upregulated in the fast recovery group, while junctional adhesion molecule 1 (F11r) was 1.5 fold down-regulated in the fast recovery group. Conclusion The results implied that integrin signaling pathway may be involved in the recovery from restraint stress in rats. The present study provided a global overview of hypothalamus transcriptional profiles during the process of recovery from the restraint stress in rats. The integrin signaling pathway seems to be involved in the recovery process, which deserves further study to clarify the integrin-mediated recovery mechanism after restraint stress.