A new cathode material, LiVPO4F, has been synthesized through two steps of solid-state reactions. In the first step, vanadium pentoxide, ammonium dihydrogen phosphate, and a high surface area carbon were pre-heated at 300 ℃ and reacted at 750 ℃ under an inert atmosphere to yield the trivalent vanadium phosphate VPO4. In the second step, the product LiVPO4F was synthesized by the reaction with VPO4 and LiF. The LiVPO4F was characterized by X-ray diffraction, scanning electron microscopy, cyclic voltammetry and charge/discharge testing measurements. The LiVPO4F is triclinic crystalline system. At 0.1 C rate, the first charge/discharge capacities were 150.1 mAh·g-1 and 132.6 mAh·g-1; At 0.2 C rate, the first charge/discharge capacities were 142.9 mAh·g-1 and 125.2 mAh·g-1. The LiVPO4F from this work has higher charge/discharge voltage 4.3 V and 4.1 V, respectively.
Cathode material LiFePO4 of lithium-ion battery was synthesized by microwave heating. The "carbon-included" LiFePO4 with improved conductivity was synthesized by the addition of graphite. And the influence of microwave-heating time on structure, morphology and charge/discharge performance of the products was discussed. The results of XRD, SEM, XPS, CV and charge/discharge testing measurements showed that the LiFePO4 product after 9 min in microwave oven had more advantages than other products.