To improve the accuracy of illumination estimation while maintaining a relative fast execution speed, a novel learning-based color constancy using color edge moments and regularized regression in an anchored neighborhood is proposed. First, scene images are represented by the color edge moments of various orders. Then, an iterative regression with a squared Frobenius norm(F-norm) regularizer is introduced to learn the mapping between the edge moments and illuminants in the neighborhood of the anchored sample.Illumination estimation for the test image finally becomes the nearest anchored point search followed by a matrix multiplication using the associated mapping matrix which can be precalculated and stored. Experiments on two standard image datasets show that the proposed approach significantly outperforms the state-of-the-art algorithms with a performance increase of at least 10. 35% and 7. 44% with regard to median angular error.