产生和保持一个稳定、准确、可靠的时间尺度是所有时间实验室追求的目标.传统的ALGOS算法主要考虑时间尺度的长期稳定度,而地方原子时尺度需兼顾长、短期的稳定度.通过对原子钟噪声模型的分析研究,在保证地方原子时尺度长期稳定度不降低的条件下,提出适合中国科学院国家授时中心(National Time Service Center,NTSC)守时钟类型单一、钟性能相近的时间实验室计算地方时间尺度TA(NTSC)的一套完整算法.应用NTSC 2008年全年所有参加国际原子时(International Atomic Time,TAI)计算的钟的数据进行新算法的验证计算,得到的TA(NTSC)的短期稳定度指标与长期稳定度指标均有提高.研究结果适用于与NTSC守时系统结构相似的时间实验室的原子时尺度计算.
为了更好地计算GPSCV(共视)时间传递中的电离层时延值(它是影响GPSCV比对结果精度的主要因素之一),介绍了当前3种电离层时延的计算方法,并以NICT(National Institute of Information and Communications Technology)单站GPS比对数据及NICT与NTSC(National Time Service Center)的GPS共视比对数据为例,分析比较了不同的电离层时延计算方法对GPS时间比对结果精度的影响。计算结果表明:利用双频实测电离层时延和利用IGS(International GPS Service)提供的TEC(total electron content)map计算的电离层时延对GPSCV比对结果修正后的精度,比利用电离层改正模型的时延对比对结果修正后的精度分别提高30%~40%和20%~30%。
为了实现守时系统与授时系统的高准确度时间同步,通过搬运钟法对微波时间传输系统的可测量时延部分进行准确测量,应用测量结果对微波时间传输系统进行校准,将GPS共视比对结果与微波时间传输系统的单、双向比对结果进行分析研究,并用BIPM(BUREAU INTERNATIONAL DES POIDS ET MESURES)给出的结果进行验证,得出两种不同时间同步方法的同步误差和两种不同方法产生误差的主要原因,给出了两种不同方法在时间统一系统中的的最佳应用模式。