文章研究多服务器、多客户端联邦学习(federated learning,FL)场景中的激励机制,并将任务分配和定价问题建模为多个逆向拍卖问题。根据切比雪夫(Chebyshev)定理对客户端每一轮的本地模型性能进行评估,并进一步利用指数衰减函数评估其本地模型的总体性能;设计基于本地模型性能的逆向拍卖(local model performance based reverse auction,LPRA)算法解决任务分配和定价问题以激励更多高性能的客户端参与,并从理论上证明LPRA算法满足个体理性、真实性和计算高效性;通过仿真实验验证LPRA算法的有效性。
在移动社交网络中,人们通过携带无线设备在近距离范围内彼此传递信息,从而达到信息的传播。由于移动社交网络中一般不存在端到端的连接,使得数据转发算法成为一个重要问题。文章从社区和节点的社会属性角度,利用社区和节点的影响力,提出了一种基于影响力的数据转发算法(data forwarding algorithm based on impact,DFAI)。在该算法中,携带数据包的节点只有在遇到影响力达到一定要求的节点时,才拷贝数据包给相遇节点。仿真试验结果显示,与经典的Epidemic和Label算法相比,DFAI可以明显降低网络开销,同时接近Epidemic算法达到的最大传递率。