A mesogen-jacketed liquid crystal polymer,poly{2,5 -bis[(4′-hexyloxyphenyl)oxycarbonyl]styrene}(PHPCS),with number-average d molecular weight of 1.28×105 and polydispersity of 1.48 was prepared vi a 2,2,6,6 -tetramethyl-piperidinyloxy mediated free radical polymerization.The thermotr opic behavior was studied by a combination of differential scanning calorimetry, thermogravimetry,polarized optical microscope and wide-angle X-ray diffracti on.PHPCS was not crystalline over the entire temperature region studied.On hea ting,PHPCS first became an isotropic melt at glass transition temperature (T g) and then a mesophase at temperatures much higher than T g.On subseq uent cooling,the formed ordered phase disappeared above T g.Contrary to t heoretical predictions and previous experimental observations,the transition fr om isotropic melt to liquid crystalline phase was an endothermic process and th e order-disorder transition took place with concurrence of heat release.
This paper describes the synthesis and free radical polymerization of 2,5 bis(4′ alkyloxyphenyl)styrene(M n ) for mesogen jacketed liquid crystal polymers(MJLCPs), where p terphenyl subsituted by alkoxy groups at both ends was used as mesogenic unit. Because of the absence of the polar linkage groups, such as —COO— or —CONH— as employed in the previous reported MJLCPs, M n is believed to be polymerized easily by both free radical polymerization and ionic polymerization. The chemical structure of M n was proved by 1H NMR, mass spectrometry and elementary analysis. Their phase transition and liquid crystallinity were characterized by DSC and POM. Although M 1, M 2, M 3 and M 4 exhibited monotropic nematic mesophase, M 5 displayed enantiotropic nematic mesophase presumably because of its decreased melting transition temperature. All monomers were easily polymerized to moderately high molecular weight polymers. At elevated temperature above T g, poly[2,5 bis(4′ alkoxyphenyl)styrene] showed a very stable mesophase. The formed birefrigence did not disappear until thermal decomposition started. Compared to other MJLCPs, the polymers reported here have much higher thermal stability. [WT5HZ]