针对多目标跟踪中,目标瞬间丢失、目标交错或重叠时目标跟踪失败等情况,提出了一种改进Camshift(continuously adaptive mean shift)算法和卡尔曼滤波组合的多目标跟踪方法.在Camshift算法中,从目标的颜色直方图模型得到每帧图像的反向投影图,根据目标的大小自适应地调整搜索窗口尺寸,并迭代计算各目标窗口的质心位置.通过自适应地扩展搜索窗口,从而解决了因目标加速度而引起的目标瞬间丢失问题.采用卡尔曼滤波实现对运动目标的位置估计,以克服多目标运动引起的交错或重叠以及噪声干扰.实验结果表明,这种组合算法能有效地改善多目标跟踪的性能,实现目标连续跟踪.
提出了一种双目移动机器人实时动态目标识别与定位方法。该算法首先采用SIFT(Scale Invariant Features Transforms)算法提取目标特征,并结合双目视差特征进行目标匹配;然后通过区域增长方法进行目标区域的提取;最后结合双目视觉标定的模型对目标进行定位。实验结果表明:该方法在摄像机运动-目标运动情况下,能对局部特征未知或特征不明显的动态目标进行有效的识别与定位。