The ultrastructure of the epidermis and flesh of apple ( Malus domestica Borkh cv. Red Fuji) fruit was systematically observed during the fruit development via transmission electron microscopy. The results showed that, in spite of the ultrastructural changes in many aspects of the developing fruit epidermal cells, it remained almost unchanged throughout the whole developmental process that the cytoplasm was filled with numerous endoplasmic reticula (ER). Most of these endoplasmic reticula were tube_like and rough_ER with enlarged cisterna from which many vesicles were produced. Some of the vesicles were shown to merge into vacuole. Some dynamic Golgi bodies were also found. All the ultrastructural characteristics showed that the epidermal cells have the features of excretory cells. The ultrastructure of the fruit flesh cells at the young fruit stage were shown to be metabolically active, characterized by the presence of numerous clustered plasmodesmata, cisterna enlarged_ and rough_ER filling the cytoplasm, plenty of vesicles and Golgi bodies, indicating their dynamic cellular transport function. Some giant_circular rough_ERs were found. All the ultrastructural features at this early developmental stage should be closely associated with the enlargement of the young fruit. At the rapid growing phase of the fruit the main changes were characterized by: the starch grain_filled amyloplasts, furcating of the single orifice of plasmodesmata, and the cytoplasm enrichment of both the Golgi body_formed vesicles and other vesicles. These features correspond well with those of a photoassimilate sink_cell. An ultrastructural degeneration phenomenon was observed at the fruit ripening stage, but the mitochondria and plasmalemma still remained intact, which might be related to the continuous development of fruit quality during the fruit ripening.