- 离散时间代数Riccati矩阵方程对称解的双迭代算法被引量:1
- 2013年
- 基于求线性矩阵方程约束解的修正共轭梯度法的基本思想,研究在最优控制系统中遇到的离散时间代数Riccati矩阵方程(DTARME)对称解的数值计算问题.首先对DTARME中的逆矩阵采用矩阵级数方法进行等价转化,然后运用牛顿算法将DTARME的对称解问题转化为线性矩阵方程的对称解或者对称最小二乘解问题,最后采用修正共轭梯度法进行计算.由此,可建立求DTARME的对称解的双迭代算法,并给出相应的收敛性结论.数值算例表明,双迭代算法是有效的.
- 张凯院牛婷婷朱寿升
- 关键词:对称解
- 一类离散时间代数Riccati矩阵方程异类约束解的双迭代算法被引量:1
- 2014年
- 本文研究在最优控制系统中遇到的离散时间代数Riccati矩阵方程(DTARME)异类约束解的数值计算问题.首先对多变量DTARME中的逆矩阵采用矩阵级数方法进行等价转化,然后采用牛顿算法求多变量DTARME的异类约束解,并采用修正共轭梯度法求由牛顿算法每一步迭代计算导出的线性矩阵方程的异类约束解或者异类约束最小二乘解,建立求多变量DTARME的异类约束解的双迭代算法.双迭代算法仅要求多变量DTARME有异类约束解,不要求它的异类约束解唯一,也不对它的系数矩阵做附加限定.数值算例表明,双迭代算法是有效的.
- 牛婷婷张凯院宁倩芝
- 一类离散时间代数Riccati矩阵方程对称解的双迭代算法被引量:3
- 2015年
- 利用逆矩阵的Neumann级数形式,将在线性二次优化问题中遇到的含未知矩阵之逆的离散时间代数Riccati矩阵方程(DTARME)转化为高次多项式矩阵方程,然后采用牛顿算法求高次多项式矩阵方程的对称解,并采用修正共轭梯度法求由牛顿算法每一步迭代计算导出的线性矩阵方程的对称解或者对称最小二乘解,建立求DTARME的对称解的双迭代算法。双迭代算法仅要求DTARME有对称解,不要求它的对称解唯一,也不对它的系数矩阵做附加限定。数值算例表明双迭代算法是有效的。
- 张凯院宁倩芝牛婷婷
- 关键词:对称解
- 一类非线性矩阵方程对称解的双迭代算法被引量:4
- 2014年
- 利用逆矩阵的Neumann级数形式,将在Schur插值问题中遇到的含未知矩阵二次项之逆的非线性矩阵方程转化为高次多项式矩阵方程,然后采用牛顿算法求高次多项式矩阵方程的对称解,并采用修正共轭梯度法求由牛顿算法每一步迭代计算导出的线性矩阵方程的对称解或者对称最小二乘解,建立求非线性矩阵方程的对称解的双迭代算法.双迭代算法仅要求非线性矩阵方程有对称解,不要求它的对称解唯一,也不对它的系数矩阵做附加限定.数值算例表明,双迭代算法是有效的.
- 张凯院牛婷婷聂玉峰
- 关键词:非线性矩阵方程对称解