A physical model of bulk-nanochannel-bulk with buffer baths is built up using nonequilibrium molecular dynamics (MD) simulation to study the effects of vibrating silicon atoms on the viscosity of aqueous NaCl solutions confined in the nanochannel. The simulation is performed under different moving speeds of the upper wall, different heights and different surface charge densities in the nanochannel. The simulation results indicate that with the increase in the surface charge density and the decrease in the nanochannel height and the shear rate, the vibration effect of silicon atoms on the shear viscosity of the confined fluid in the nanochannel cannot be ignored. Compared with still silicon atoms, the vibrating silicon atoms result in the decrease in the viscosity when the height of the nanochannel is less than 0.8 nm and the shear rate is less than 1.0 ×10^11 s^-1, and the effect of the vibrating silicon atoms on the shear viscosity is significant when the shear rate is small. This is due to the fact that the vibrating silicon atoms weaken the interactions between the counter-ions (Na^+ ) and the charged surface.