The geometrical structures of wurtzite CrX (X=As, Sb, O, Se, and Te) were optimized, then their electric and magnetic properties were investigated by the first-principle calculations within the generalized gradient approximation for the exchange-correlation functional based on the density functional theory. These Cr-phosphides and Cr-sulphides were predicted to be half-metallic ferromagnets whose spin-polarization at the Fermi level is absolutely 100%. The molecular magnetic moments of Cr-phosphides and Cr-sulphides are 3.00 and 4.00 μB, which arise mainly from Cr-ions, respectively. There is ferromagnetic coupling in both Cr- phosphides and Cr-sulphides. The Curie temperatures of Cr-sulphides and Cr-phosphides are high. The electronic structures of Cr-ions are a1g^2↑↓t1u^4↑↓t1u^1↑↓eg^2↑↓in Cr-phosphides and a1g^2↑↓t1u^4↑↓t1u^1↑t2g^3↑in Cr-sulphides, respectively.