李军辉
- 作品数:57 被引量:169H指数:9
- 供职机构:苏州大学计算机科学与技术学院更多>>
- 发文基金:国家自然科学基金国家高技术研究发展计划江苏省自然科学基金更多>>
- 相关领域:自动化与计算机技术文化科学语言文字经济管理更多>>
- 基于无监督预训练的跨语言AMR解析
- 2024年
- 抽象语义表示AMR是将给定文本的语义特征抽象成一个单根的有向无环图。由于缺乏非英文语言的AMR数据集,跨语言AMR解析通常指给定非英文目标语言文本,构建其英文翻译对应的AMR图。目前跨语言AMR解析的相关工作均基于大规模英文-目标语言平行语料或高性能英文-目标语言翻译模型,通过构建(英文,目标语言和AMR)三元平行语料进行目标语言的AMR解析。与该假设不同的是,本文探索在仅具备大规模单语英文和单语目标语言语料的情况下,实现跨语言AMR解析。为此,提出基于无监督预训练的跨语言AMR解析方法。具体地,在预训练过程中,融合无监督神经机器翻译任务、英文和目标语言AMR解析任务;在微调过程中,使用基于英文AMR 2.0转换的目标语言AMR数据集进行单任务微调。基于AMR 2.0和多语言AMR测试集的实验结果表明,所提方法在德文、西班牙文和意大利文上分别获得了67.89%,68.04%和67.99%的Smatch F1值。
- 范林雨李军辉孔芳
- 最大熵模型在邮件分类中的应用被引量:1
- 2007年
- 邮件分类是指在给定的分类体系下,根据邮件的内容和属性,确定其类别标签的过程。将最大熵模型应用于邮件分类中,给出了邮件的预处理过程,介绍了邮件信头特征,分析比较了特征数量和迭代次数、邮件特征字段对分类结果的影响,以及对层次分类和平面分类的效果进行了比较。实验表明,特征数量和迭代次数分别取2000和250时为宜;充分利用邮件各字段信息,取得的总体分类效果最好,但对合法邮件,利用邮件头及邮件标题却取得了最好结果,并在层次分类中验证了这点,层次分类效果要优于平面分类。最后进行了总结和展望。
- 李军辉李培峰朱巧明钱培德
- 关键词:最大熵模型邮件分类
- 一种改进的中文层次句法分析模型研究
- 首先提出了层次句法分析模型,该模型先对输入句子进行词性标注和基本组块识别,紧接着循环多次进行复杂组块识别直至得到根结点。该方法本质上属于一种基于移进-归约序列的句法分析模型,因此具有此类模型的各类优点;然后,本文分析了移...
- 李军辉周国栋朱巧明钱培德
- 文献传递
- 一种基于历史信息的多层次中文句法分析方法被引量:4
- 2009年
- 实现一个基于历史信息的多层次中文句法分析系统。采用最大熵模型进行参数学习,在每层处理过程中,优先识别出容易识别的组块,在此基础上根据更丰富的上下文信息循环进行复杂组块的识别,直至识别出根结点。通过采用给出的相关算法,实验结果表明,在宾州中文树库测试集Section271-300上得到的F值性能为83.76%(<=40 words)和80.02%(<=100 words)。
- 耿向好李军辉周国栋朱巧明
- 关键词:历史信息层次分析最大熵模型
- 基于最大熵模型的邮件过滤系统研究被引量:1
- 2006年
- 将最大熵模型引入到邮件过滤中,结合邮件的半结构化特性,给出改进的特征函数定义,形成邮件特征向量。在此基础上,构造出基于最大熵模型的邮件过滤系统的基本框架。实验结果表明,这种过滤方法在召回率、准确率等方面表现出了良好的性能。
- 司广涛李培峰朱巧明李军辉
- 关键词:最大熵模型特征提取邮件过滤
- 基于枢轴语言的图像描述生成研究被引量:3
- 2019年
- 当前图像描述生成的研究主要仅限于单语言(如英文),这得益于大规模的已人工标注的图像及其英文描述语料。该文探索零标注资源情况下,以英文作为枢轴语言的图像中文描述生成研究。具体地,借助于神经机器翻译技术,该文提出并比较了两种图像中文描述生成的方法:(1)串行法,该方法首先将图像生成英文描述,然后由英文描述翻译成中文描述;(2)构建伪训练语料法,该方法首先将训练集中图像的英文描述翻译为中文描述,得到图像-中文描述的伪标注语料,然后训练一个图像中文描述生成模型。特别地,对于第二种方法,该文还比较了基于词和基于字的中文描述生成模型。实验结果表明,采用构建伪训练语料法优于串行法,同时基于字的中文描述生成模型也要优于基于词的模型,BLEU_4值达到0.341。
- 张凯李军辉周国栋
- 关键词:机器翻译神经网络
- AMR文本生成的数据扩充方法
- 2022年
- 在抽象语义表示(AMR)文本生成过程中,AMR图到文本形式的转换在很大程度上受语料规模的影响。提出一种简单有效的动态数据扩充方法,在已标注数据集规模有限的情况下提高AMR文本生成性能。将AMR文本生成模型解码端视作一个语言模型,使用单词级别的扩充方法,通过动态地对目标端单词进行随机替换,得到带噪声的数据,从而增强模型的泛化能力。在加载数据时,随机选择目标句子中的部分单词做噪声化处理,利用约束编码器预测被覆盖的单词并还原出原始语句,使模型具有更深层的语言表征能力。基于AMR2.0和AMR3.0英文标准数据集进行实验,结果表明,该方法可有效提升AMR文本生成系统性能,与未引入噪声的基准Transformer模型相比,能够获得更优的BLEU、Meteor和chrF++指标,其中BLEU值在人工标注语料场景下分别提升0.68和0.64,且在大规模自动标注语料场景下也能提升0.60和0.68。
- 付叶蔷李军辉
- 关键词:噪声
- 邮件语料库的语料添加算法研究与实现
- 本文介绍了在构建动态邮件语料库时所必须解决的问题-邮件语料的添加。由于待添加的邮件预先都已标好类别,根据其类别是否属于原有的类别体系,分两种情况进行处理:1)属于原有类别的新邮件, 将这类邮件细分为Ⅰ、Ⅱ和Ⅲ类,最后只将...
- 李军辉朱巧明钱培德
- 文献传递
- 基于子字单元的神经机器翻译未登录词翻译分析被引量:10
- 2018年
- 神经机器翻译为机器翻译提供了一种全新的方法,在多对语言之间的翻译质量上,已超过了统计机器翻译,并逐渐成为当前机器翻译的主流方向。未登录词翻译是神经机器翻译的主要难点之一。为了消解未登录词,一种可行的方案是采用Byte Pair Encoding(BPE)方法。该方法在翻译前将原有的单词拆解为更小粒度的高频子字单元。该文主要探究BPE方法在中英神经机器翻译中的应用,分析BPE方法在多大程度上可以解决中英未登录词翻译缺失的问题。实验表明,与Baseline系统相比,BPE方法获得了1.02BLEU值的提升,对未登录词的翻译精准度达到了45%,与统计机器翻译系统翻译精准度相似。
- 韩冬李军辉熊德意周国栋
- 关键词:未登录词
- 融合目标端上下文的篇章神经机器翻译
- 2024年
- 神经机器翻译在句子级翻译任务上取得了令人瞩目的效果,但是句子级翻译的译文会存在一致性、指代等篇章问题,篇章翻译通过利用上下文信息来解决上述问题。不同于以往使用源端上下文建模的方法,该文提出了融合目标端上下文信息的篇章神经机器翻译。具体地,该文借助推敲网络的思想,对篇章源端进行二次翻译,第一次基于句子级翻译,第二次翻译参考了全篇的第一次翻译结果。基于LDC中英篇章数据集和WMT英德篇章数据集的实验结果表明,在引入较少的参数的条件下,该文方法能显著提高翻译性能。同时,随着第一次翻译(即句子级译文)质量的提升,所提方法也更有效。
- 贾爱鑫李军辉贡正仙张民
- 关键词:篇章翻译