A dynamic biogeochemical model was used to estimate the responses of China's terrestrial net primary productivity (NPP), soil heterotrophic respiration (HR) and net ecosystem productivity (NEP) to changes in climate and atmospheric CO2 from 1981 to 1998. Results show that China's total NPP varied between 2.89 and 3.37 Gt C/a and had an increasing trend by 0.32% per year, HR varied between 2.89 and 3.21 Gt C/a and grew by 0.40% per year, Annual NEP varied between -0.32 and 0.25 Gt C but had no statistically significant interannual trend. The positive mean NEP indicates that China's terrestrial ecosystems were taking up carbon with a total carbon sequestration of 1.22 Gt C during the analysis period. The terrestrial NEP in China related to climate and atmospheric CO2 increases accounted for about 10% of the world's total and was similar to the level of the United States in the same period. The mean annual NEP for the analysis period was near to zero for most of the regions in China, but significantly positive NEP occurred in Northeast China Plain, the southeastern Xizang (Tibet) and Huang-Huai-Hai Plain, and negative NEP occurred in the Da Hinggan Mountains, Xiao Hinggan Mountains, Loess Plateau and Yunnan-Guizhou Plateau. China's climate at the time was warm and dry relative to other periods, so the estimated NEP is probably lower than the average level. China's terrestrial NEP may increase if climate becomes wetter but is likely to continue to decrease if the present warming and drying trend sustains.