链霉菌是重要的工业微生物,能够合成众多具有生物活性的次级代谢产物,如抗生素、抗肿瘤药物以及免疫抑制剂等.次级代谢产物的合成受到多层次严格调控,深入开展相关机制研究将对工业菌株的高效育种提供重要理论指导.链霉菌中存在的两类关键信号传导系统,包括双组分系统(two-component system,TCS)和胞质外功能σ因子(extracytoplasmic function σ,ECF-σ),它们在次级代谢过程中发挥着重要的调控功能,但至今对于它们如何协同调控次级代谢的分子机制知之甚少.在前期研究工作中,我们在链霉菌模式菌株——天蓝色链霉菌中鉴定了一个参与抗生素生物合成调控的基因簇sigQ-afsQ1-4,其中sigQ编码ECF-σ因子(σQ),afsQ1/Q2编码一对TCS,afsQ3/Q4分别编码脂蛋白和跨膜蛋白.研究证实,TCS AfsQ1/Q2为抗生素生物合成的激活因子,sigQ的转录受到AfsQ1/Q2的直接调控,但σQ的功能正好相反,参与抗生素合成的负调控,即σQ对AfsQ1/Q2的功能存在拮抗作用.在前期工作基础上,本研究通过基因缺失突变体构建、转录分析等对sigQ/afsQ1-4基因簇内的基因功能及其相互作用关系进行了系统研究,并对σQ参与AfsQ1/Q2功能的拮抗机制进行了深入研究.结果显示,sigQ的缺失可显著下调膜蛋白基因afsQ4的表达,而在sigQ缺失突变体(ΔsigQ)中导入afsQ4可以很好回补突变体表型,由此表明afsQ4是σQ的下游调控靶点,σQ的调控功能可能一定程度上是通过AfsQ4来实现.进一步体外磷酸化实验分析发现,组氨酸蛋白激酶AfsQ2的磷酸化水平在afsQ4的基因缺失突变体显著降低,表明σQ可以借助膜蛋白AfsQ4拮抗AfsQ1/Q2的功能,最终协同调控抗生素的生物合成.