您的位置: 专家智库 > >

李静

作品数:2 被引量:6H指数:2
供职机构:临沂师范学院理学院数学系更多>>
发文基金:山东省自然科学基金更多>>
相关领域:自动化与计算机技术电气工程理学更多>>

文献类型

  • 2篇中文期刊文章

领域

  • 1篇电气工程
  • 1篇自动化与计算...
  • 1篇理学

主题

  • 1篇预约
  • 1篇售后
  • 1篇售后服务
  • 1篇排队论
  • 1篇汽车
  • 1篇汽车售后
  • 1篇汽车售后服务
  • 1篇最优解
  • 1篇稳定性
  • 1篇流行病模型
  • 1篇函数
  • 1篇V函数
  • 1篇LYAPUN...
  • 1篇捕食模型

机构

  • 2篇临沂师范学院

作者

  • 2篇李静
  • 1篇王颖

传媒

  • 1篇商丘师范学院...
  • 1篇科技信息

年份

  • 1篇2010
  • 1篇2009
2 条 记 录,以下是 1-2
排序方式:
排队论在汽车售后服务系统的应用被引量:4
2009年
本文采用排队论的理论和方法得到了使每一位客户来4S店等待维修时间最短,且公司成本最低的最优维修机组个数,并给出了一个行之有效的接待、派工程序。在服务月采取提高维修机组的工作效率来完成任务。
李静
关键词:排队论最优解预约
Lyapunov函数的构造及应用被引量:2
2010年
微分方程解的稳定性研究中最为常用的是李雅普诺夫第二法(直接法),利用这种方法研究系统的解的稳定性,其关键就是构造李雅普诺夫函数,即V函数.本文目的在于分析、总结系统稳定性的李雅普诺夫第二法的相关理论,以及如何借助李雅普诺夫函数来判断系统的稳定性.在Lotka-Voltera模型和流行病模型(SIR模型和SI模型)中,通过构造李雅普诺夫函数(一个与ln有关的函数),并借助李雅普诺夫函数及导数的符号特征,直接判断系统模型在平衡状态下的稳定性.
李静王颖
关键词:V函数稳定性捕食模型流行病模型
共1页<1>
聚类工具0