您的位置: 专家智库 > >

牛庆杰

作品数:2 被引量:4H指数:1
供职机构:东南大学更多>>
发文基金:国家自然科学基金更多>>
相关领域:理学更多>>

文献类型

  • 1篇期刊文章
  • 1篇学位论文

领域

  • 2篇理学

主题

  • 1篇图论
  • 1篇积图
  • 1篇号数
  • 1篇SPANS
  • 1篇TREE
  • 1篇EDGE
  • 1篇乘积
  • 1篇乘积图
  • 1篇PATHS
  • 1篇SPAN
  • 1篇LABELI...

机构

  • 2篇东南大学

作者

  • 2篇牛庆杰
  • 1篇宋增民
  • 1篇林文松

传媒

  • 1篇Journa...

年份

  • 2篇2007
2 条 记 录,以下是 1-2
排序方式:
图的L(s,t)-标号数与边跨度
图的L(2,1)-标号是从频道分配问题中概括出来的一类图的着色问题。假定某一地区有若干电台,这些电台要在给定的频道内传输信号.为了减少干扰,“相邻”的电台必须使用相差足够远的频道,邻近的电台必须使用不同的频道。我们要在互...
牛庆杰
关键词:图论
文献传递
L(s,t) edge spans of trees and product of two paths被引量:1
2007年
L( s, t)-labeling is a variation of graph coloring which is motivated by a special kind of the channel assignment problem. Let s and t be any two nonnegative integers. An L (s, t)-labeling of a graph G is an assignment of integers to the vertices of G such that adjacent vertices receive integers which differ by at least s, and vertices that are at distance of two receive integers which differ by at least t. Given an L(s, t) -labeling f of a graph G, the L(s, t) edge span of f, βst ( G, f) = max { |f(u) -f(v)|: ( u, v) ∈ E(G) } is defined. The L( s, t) edge span of G, βst(G), is minβst(G,f), where the minimum runs over all L(s, t)-labelings f of G. Let T be any tree with a maximum degree of △≥2. It is proved that if 2s≥t≥0, then βst(T) =( [△/2 ] - 1)t +s; if 0≤2s 〈 t and △ is even, then βst(T) = [ (△ - 1) t/2 ] ; and if 0 ≤2s 〈 t and △ is odd, then βst(T) = (△ - 1) t/2 + s. Thus, the L(s, t) edge spans of the Cartesian product of two paths and of the square lattice are completely determined.
牛庆杰林文松宋增民
关键词:TREE
共1页<1>
聚类工具0