以聚丙烯腈(PAN)和三聚氰胺为原料,通过静电纺丝法制备了三聚氰胺改性聚丙烯腈纳米纤维前驱体,经预氧化、碳化后得到交联的多孔纳米碳纤维.采用红外光谱(FTIR)仪、热重分析(TGA)仪、扫描电子显微镜(SEM)、X射线衍射(XRD)仪、拉曼光谱仪和比表面积分析仪等对前驱体及纤维进行了表征.结果表明,经过三聚氰胺改性的聚丙烯腈纳米纤维前驱体在碳化后有效地交联,形成含有微孔、介孔和大孔多级的合理孔道结构,氮掺杂量高达14.3%,纤维直径大幅缩减,平均直径仅约89 nm.电化学测试结果表明,交联多孔纳米碳纤维电极在0.05 A g–1电流密度下未经活化时的质量比电容值高达194 F g–1(0.05 A g–1),在2 A g–1的电流密度下经过1000次循环充放电后的比电容仍然保持99.2%,表现出优异的电化学特性.
利用苯胺原位化学聚合合成聚苯胺包覆凹凸棒石,再经过高温热处理得到氮掺杂碳包覆凹凸棒石。采用扫描电子显微镜(SEM)、X射线衍射仪(XRD)、傅立叶转换红外线光谱(FTIR)、差热分析法(DTA)对样品形貌和化学结构进行表征,利用循环伏安法、恒电流充放电及交流阻抗技术研究其用作超级电容器电极材料时的电化学性能。研究表明,氮掺杂碳包覆凹凸棒石在6 mol·L^(–1)的KOH电解液中具有较好的电容性能,在20 m V·s^(–1)的扫速下质量比电容可达161.9 F·g^(–1),且该复合材料具有较小的内阻和良好的电容稳定性。