李辉 作品数:32 被引量:187 H指数:8 供职机构: 青岛科技大学信息科学技术学院 更多>> 发文基金: 国家自然科学基金 山东省自然科学基金 江西省自然科学基金 更多>> 相关领域: 自动化与计算机技术 电子电信 天文地球 更多>>
基于深度学习的手语识别综述 被引量:24 2020年 手语识别涉及计算机视觉、模式识别、人机交互等领域,具有重要的研究意义与应用价值。深度学习技术的蓬勃发展为更加精准、实时的手语识别带来了新的机遇。该文综述了近年来基于深度学习的手语识别技术,从孤立词与连续语句两个分支展开详细的算法阐述与分析。孤立词识别技术划分为基于卷积神经网络(CNN)、3维卷积神经网络(3D-CNN)和循环神经网络(RNN) 3种架构的方法;连续语句识别所用模型复杂度更高,通常需要辅助某种长时时序建模算法,按其主体结构分为双向长短时记忆网络模型、3维卷积网络模型和混合模型。归纳总结了目前国内外常用手语数据集,探讨了手语识别技术的研究挑战与发展趋势,高精度前提下的鲁棒性和实用化仍有待于推进。 张淑军 张群 李辉关键词:手语识别 循环神经网络 基于约束策略的WSN低能耗粒子滤波跟踪算法 被引量:1 2015年 目标跟踪是无线传感器网络研究的关键技术之一,如何在保证较低能量消耗的前提下,实现监测场景中运动目标准确跟踪是需要解决的问题。在深入研究分析传感器网络目标跟踪算法的基础上,提出了基于约束策略的WSN低能耗粒子滤波跟踪算法。该算法采用动态分簇,既减少网络的能量消耗,又保证监测目标节点的数量;在跟踪过程中,采用约束策略得出目标估计区域,对粒子采样结果进行优化,同时对状态空间模型进行改进,增强粒子对目标的跟踪能力。仿真结果表明,提出的跟踪算法有效的实现目标的跟踪,在保证低能耗的同时提高了跟踪精度。 李辉 刘云 王传旭 崔雪红 张俊虎关键词:目标跟踪 无线传感器网络 粒子滤波 深度学习的多尺度多人目标检测方法研究 被引量:11 2020年 深度学习具有自主学习目标特征、识别率高、鲁棒性强等优点,当前基于深度学习的人体目标检测方法不能有效地适应目标的尺度变化。针对上述问题,提出多尺度多人的目标检测方法,将FPN特征金字塔分别与Faster R-CNN网络的两个阶段结合,同时,平衡RPN阶段产生的正负锚点的数量比例,并采用了更适合的锚点纵横比,对原始网络进行了一系列的优化。在标准数据集PETS 2009、Caltech和INRIA上的实验结果表明,提出的检测方法性能优于主流深度学习目标检测算法。 刘云 钱美伊 李辉 王传旭关键词:锚点 基于卷积神经网络的轮胎缺陷X光图像分类 被引量:17 2017年 轮胎缺陷的类型直接决定着轮胎是否为残次品或废品,对于轮胎定级具有重要参考价值,探索高性能的轮胎缺陷分类方法至关重要。采用卷积神经网络技术,提出一个端到端的图像自动分类算法。首先,从国内某轮胎生产线上通过现场运行的轮胎X光射线缺陷检测系统采集胎侧异物缺陷、胎冠异物缺陷、气泡缺陷、胎冠劈缝、胎侧开根5种最常见缺陷类型和1种正常胎侧图像作为分类目标,并且依据缺陷图像的缺陷尺度,将每幅图像缩放到127×127像素的统一大小;然后,设计含有5个卷积层、3个池化层、3个全连接层的网络结构。最后,用采集的缺陷样本对所设计的深度网络进行训练学习与测试。并将该算法和大量传统分类算法进行实验对比,取得更好的分类效果,平均测试识别率高达96.51%。 崔雪红 刘云 王传旭 李辉关键词:卷积神经网络 图象分类 融合多尺度特征和多重注意力的水下目标检测 被引量:4 2022年 探明海洋生物资源的分布情况,对渔业捕捞和海洋牧场管理具有重要意义。该研究针对水下环境复杂、水下目标存在多尺度、多类别及小目标较多等复杂情况,提出水下目标两阶段网络检测方法。首先通过改进多尺度特征提取和融合,获取水下目标多尺度信息和增强目标特征,得到更加丰富的目标特征信息,然后构建多重注意力,利用空间和通道维度中的全局特征依赖关系,进一步挖掘深层特征信息和隐藏信息,突出背景和目标的差异性,最后在模型训练中采用样本均衡方法,自适应均衡正负样本比例,减少无效样本,实现模型快速收敛。在国际水下机器人大赛公开数据集UPRC2019、WildFish及自建数据集上对所提方法进行试验,其mAP(mean Average Precision)分别达到85.3%、96.9%和97.8%,召回率分别达到90.6%、98.7%和98.9%,相较于Libra RCNN(CVPR2019)、Double head RCNN(ECCV2020)和STransFuse(2021)等检测方法,该文方法mAP要比上述方法分别高9.58、12.2和4.1个百分点。研究结果可为海洋渔业生物监测、水下机器人精准捕捞作业提供技术支撑。 李辉 王晓宇 刘云 陶冶 付诗佳 吴依凡关键词:目标检测 注意力 基于时域扩张残差网络和双分支结构的人体行为识别 被引量:4 2022年 图卷积网络由于能够直接处理关节点拓扑图在行为识别方面表现出较好的性能而备受关注,但是这类方法中经常存在长时信息依赖建模能力较弱以及未关注空间语义与时间事件变化不均衡问题,对此,提出基于时域扩张残差网络和双分支结构的人体行为识别方法.在时空行为特征提取方法中,不仅用图卷积提取空间域特征,而且用扩张因果卷积和残差连接结构来构建时域扩张残差网络以提取时域特征,该网络能够在未大量增加参数的基础上有效扩大在时域上的感受野,从而更好地获得在时域上的人体关节信息的长时依赖关系.同时构建双分支结构,其中低帧率分支以较少的时间帧数和较多的通道数侧重于提取丰富的空间语义信息,高帧率分支以较多的时间帧数和较少的通道数在保证网络轻量级的前提下有效捕捉人体行为的快速变化.实验结果表明,所提出方法在NTU RGB+D数据集上的准确率高于目前先进的行为识别方法. 薛盼盼 刘云 李辉 李辉 陶冶注意力机制和全局卷积在光伏板分割中的应用 2024年 准确识别光伏对光伏产业有效健康发展至关重要。高分辨率遥感图像复杂的背景和光伏板形状颜色多变给光伏识别带来巨大的挑战。针对高分辨率遥感图像中光伏用地提取问题,提出网络以精确地提取光伏用地。该网络采用编码器和解码器的形式融合多层特征以结合丰富的语义信息,利用全局卷积和双注意力机制捕获重要的空间特征和通道特征,并使用通道融合模块恢复丢失的部分通道信息。提出的方法可以有效解决光伏板边缘模糊和光伏板粘连的问题。在公开光伏数据集上的实验表明,与U-Net、SegNet、DeepLabv3和DeepLabv3+相比,所提方法在PV01、PV03、PV08三个数据集上的IoU分别达到87.02%、92.98%和88.43%。实验证明所提方法能对高分辨率遥感图像光伏板进行高准确率分割。 李青 李海涛 李辉 张俊虎关键词:高分辨率遥感图像 基于HOG特征的步态能量图身份识别算法 被引量:7 2017年 由于步态能量图像(GEI)是对二值轮廓图像序列相加求平均,然而,二值轮廓图像只能捕获人体轮廓的边界信息,人体的内部边界信息会被完全的丢弃掉,基于GEI算法的缺陷,提出了一种基于人体目标图像的方向梯度直方图(HOG)特征的GEI识别算法,此算法不仅能捕获人体轮廓的边界信息,而且还能提取人体重合的边界信息。获取人体目标图像的HOG特征的步态能量图,首先使用视频前景分割算法提取人体目标图像,然后提取图像序列中每帧人体目标图像的HOG特征;最后对图像序列中的每帧HOG特征图像相加求平均。在此基础上,依据GEI和HOG的思想,又实现了对传统步态能量图、二值轮廓图像序列、人体目标图像步态能量图进行HOG特征提取及直接构建人体目标图像步态能量图特征的表示,从而提出了4种拓展的能量图构建方法,并针对这5种算法与经典的GEI算法利用CASIA步态数据库进行了实验分析对比,实验结果表明算法效果良好。 崔雪红 刘云 常伟 王传旭 李辉关键词:步态识别 步态能量图 HOG特征 生物识别 视频图像分割 基于改进YOLOv5n的轻量化海产生物目标检测 2024年 对于海产生物科考与捕捞等行业,在海上远洋的船只在利用水下机器人进行海产生物的捕捞与识别时,由于通信带宽受限,计算资源有限,而采用轻量化网络模型可以更好地适应这样的条件。为此,提出了一种改进YOLOv5n的海产生物目标检测模型。首先,引入高效的轻量化卷积模块(Group Shuffle Convolution,Gsconv),对模型主体进行缩减;然后改进损失函数,引用α-giou损失函数进行优化,提升预测框回归精度;再引L1-norm正则化剪枝,裁剪不必要的通道以及相关的卷积核;最后采用L2知识蒸馏,将模型精度调整到接近剪枝前的水平。结果显示,与原有基线模型YOLOv5n相比,改进后的模型计算量下降了53%,参数量下降了51%。所提出的改进算法在保持模型性能的同时保证了轻量化处理的有效性。 张翔 张俊虎 李海涛 李辉基于RGB-D与深度学习的行为识别算法 被引量:5 2019年 为提高行为识别的准确率,分析深度学习自主提取图像特征和RGB-D信息中的深度图能提供3D场景结构信息的特点,提出基于RGB-D与深度学习的行为识别算法。利用深度信息结合随机森林生成骨骼数据,将骨骼图的空间信息补充到彩色图中,生成具有ROI的图片。对其进行数据增强并将VGG网络中的全连接层变成卷积层,加入Dropout策略,在ROI内进行特征提取。实验结果表明,该算法识别精度达到了94.70%和98.31%,有效提高了行为识别的准确率。 刘云 张永 王传旭 李辉关键词:深度信息